

Learning Ext JS 4

Sencha Ext JS for a beginner

Crysfel Villa

Armando Gonzalez

 BIRMINGHAM - MUMBAI

Learning Ext JS 4

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2013

Production Reference: 1180113

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-684-6

www.packtpub.com

Cover Image by Neha Rajappan (neha.rajappan1@gmail.com)

Credits

Authors
Crysfel Villa

Armando Gonzalez

Reviewers
Satyajith Bhat

Justin Beal

Bruce Sklar

JD Smith

Iwan van der Schoor

Acquisition Editor
Usha Iyer

Lead Technical Editor
Arun Nadar

Technical Editors
Ankita Meshram

Kaustubh S. Mayekar

Sharvari Baet

Project Coordinator
Shraddha Vora

Proofreader
Linda Morris

Indexers
Hemangini Bari

Tejal Daruwale

Graphics
Valentina D'silva

Aditi Gajjar

Production Coordinator
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

About the Authors

Crysfel Villa is a Software Engineer with more than 7 years of experience with
JavaScript on a daily basis. He started his career as a Web Developer working with
HTML and basic JavaScript in the late nineties, but then he started focusing on
Server Side technologies, such as PHP and Java J2EE.

Before he started working with the Ext JS library he loved to work with MooTools,
but in late 2007 he started learning about an awesome new library that was emerging
as an Open Source project. At that time the version 2.0 of the Ext JS library was just
coming out and Crysfel started using this new library for medium-large projects in
the agency that he used to work with.

In early 2010 Crysfel started working as a freelancer, he began to train teams on
Ext JS for private companies, writing a blog with tutorials, tips and tricks, developing
custom components on Ext JS for his clients, and working on Open Source projects to
share his knowledge with the world.

If you want to find more information about his work, you can follow him on Twitter
(@crysfel) or download his Open Source projects from GitHub (crysfel).

Writing this book was very hard, especially when you are a busy
person and really like to get involved in exciting things. I want to
give special thanks to my wife Hazel, who supported me in every
step of the process, without her this wouldn't have been possible. She
read all the scripts before I submitted them; she usually found some
mistakes or things to clarify, her work on this project is priceless.

Thanks to my parents and brothers, who used to keep asking me
very often about the project and providing moral support to work
and complete this dream. Also, I want to thank all my closest friends
for the moral support that they gave me, special thanks to my
best friends Carlos and Gina who usually pushed me to continue
working on this project.

I hope this book helps people who are just starting with the library, it
really makes me happy when I'm able to provide help.

Armando Gonzalez is a Software Engineer with more than 4 years of experience
in developing enterprise applications with Ext JS. He has plenty of experience in
server-side technologies like PHP, Java J2EE, Node JS, and ROR. Before he started
with Ext JS he was a Java and PHP developer.

Since he started using JavaScript and Ext JS he became a JavaScript Evangelist,
and started training teams on JavaScript and Ext JS. He loves to teach and share
his knowledge with other developers and is always trying to make them use this
awesome library.

In early 2012 Armando started a software company, Codetlan, with some of his
friends. This company focuses on developing enterprise applications using Sencha
technologies. He is also a minor actionist in a Mexican startup called Cursame, where
he developed the mobile version of the application and helped developing the main
application using ROR technologies.

If you want to know more about his work, you can follow him on Twitter (@manduks)
or can watch his Open Source projects on Github (manduks).

Writing this book was a very awesome experience; I would like to
dedicate this book to my parents and princess, who have supported
me in all the decisions and mistakes I've made, to my brother and
sisters, who make my life happier.

Thanks to my colleagues at Codetlan, who supported me a lot while
writing this book, and special thanks to Fermin, my uncle, who has
taught me a lot.

I hope this book helps in the learning process of this awesome
library

About the Reviewers

Satyajith Bhat is an engineer, who majored in computer science, and a Sun
certified Java Developer. He has spent over 6.5 years designing, developing, and
maintaining large enterprise systems in Java/J2EE and related technologies. He
has a love for all things Java – a fascination that started during his days in college.

He was one of the early adopters of Ext JS and has worked extensively with Ext 2.0,
using it to build complete enterprise web applications for over 3 years.

He currently works as a Java Developer for a major fashion retail company in
New York.

Bruce Sklar has more than 28 years of software design and development
experience. For the last 12 years of his career he has been designing and developing
user interfaces for web-based applications. Recently, he has been designing and
developing user interfaces for mobile websites and applications.

Bruce is a User Experience manager at HandySoft Global Inc. HandySoft is a
provider of business process management software.

JD Smith is a UI developer, who loves to bring beautiful web interfaces to life.

Since writing his first BASIC program on an Apple IIe in 1986, he has been
passionate about turning engineering into art. His passions also include theology,
coffee, music, outdoor adventure, and his wife and children.

For more than 12 years, JD has been consulting on front-end web development
projects. He has broad experience with web development and UX design
for enterprises, small businesss, and mobiles. To know more about him,
visit jdsmith.pro.

Iwan van der Schoor is a Software Engineer with over 15 years of web
development experience. He holds a bachelor's degree in Higher Informatics from
the Fontys University in Eindhoven (Netherlands) and has been working in software
development in the Netherlands, United Kingdom, and is currently working as a
Front-end Engineer at a small start-up company in Silicon Valley. His focus in the
last couple of years has been building highly scalable management interfaces for
complex infrastructure equipment, and all this using the latest web technologies.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Table of Contents
Preface 1
Chapter 1: The Basics 7

Should I use Ext JS for my next project? 8
Getting started with Ext JS 9

Looking at the whole picture 10
Why so many files and folders? 11

Our first program 12
Editors 17

Sublime Text 2 18
Eclipse Web Tools Platform project 19
Aptana 20
Textmate 21
Sencha Architect 22

Building an application 26
Planning our application 26
Wireframing 27
Data structure 30
File structure 31

Summary 32
Chapter 2: The Core Concepts 33

The class system 33
Simple inheritance 37
Pre-processors and post-processors 39
Mixing many classes 42
Configurations 49
Statics methods and properties 51
Singleton 52
Alias 53

Table of Contents

[ii]

Loading classes on demand 54
Enabling the loader 55
Dependencies 57
Synchronous Loading 60

Working with the DOM 61
Getting elements 62
Query – How to find them? 63

Manipulation – How to change it? 66
Summary 70

Chapter 3: Components and Layouts 71
The components lifecycle 71

The creation phase 72
The rendering phase 75
The destruction phase 78

The lifecycle in action 79
About containers 82

The panel 86
The Window component 90

The layout system 91
Fit layout 92
Card layout 93
HBox layout 95
VBox layout 99
Border layout 101
Accordion layout 102

Summary 104
Chapter 4: It's All About the Data 105

Ajax 106
Models 111

Validations 113
Relationships 117

Dealing with the store 119
Adding new elements 120
Looping through the elements 122
Retrieving the records 122
Removing records 125

Retrieving remote data 126
Ajax proxy 126
JSON reader 128

Table of Contents

[iii]

XML reader 130
Mappings 132

Sending data 134
Summary 138

Chapter 5: Buttons and Toolbars 139
Event driven development 139
A simple button 145
Adding menus 151
Toolbars 156
The main menu for our application 162
Summary 172

Chapter 6: Doing it with Forms 173
The form component 173

Anatomy of the fields 182
Available fields 182

The Textfield class 183
The number field 185
The combobox field 188
The date field 192
The checkbox 196
The radio button 198

The field container 201
Submitting the data 204
Summary 206

Chapter 7: Give me the Grid 207
The data connection (models and stores) 208

Defining a model for the store of the grid 208
Defining a store for the grid 209

A basic grid panel 210
Columns 213
Columns renderers 216
Selection models 218
Grid listeners 220
Features 223

Ext.grid.feature.Grouping 223
Ext.grid.feature.GroupingSummary 227
Ext.grid.feature.RowBody 230
Ext.grid.feature.Summary 232

Table of Contents

[iv]

Plugins 233
Ext.grid.plugin.Editing 234
Ext.grid.plugin.CellEditing 234
Ext.grid.plugin.RowEditing 236

Grid paging 239
Infinite scrolling 241
Summary 244

Chapter 8: Architecture 245
The MVC pattern 245
Creating our first application 246

The views 250
The controller 253

Listening events 255
Opening modules 257

Creating a module 263
Adding functionality 272
References 279

Summary 281
Chapter 9: DataViews and Templates 283

The data connection (models and stores) 283
Defining our User Model 284
Defining the store 285

A basic dataview 285
Getting all our code together 286

Handling events on the dataview 287
Adding the listeners to the dataview 288

Templates 289
A more complex dataview 294
Summary 297

Chapter 10: The Tree Panel 299
A basic tree panel 300
The TreeStore 303
Tree nodes 305
Tree drag-and-drop 306
Adding and removing nodes 309
The check tree 313
The grid tree 315
Adding an invoices' categories tree panel 320
Summary 327

Table of Contents

[v]

Chapter 11: Drag and Drop 329
Make an item draggable 330
Hitting the drop zone 333
Drag and drop between Ext JS components 338
Enhancing our application with drag and drop 348
Summary 350

Chapter 12: Look and Feel 351
Setting up our environment 351
The resources folder 353
Variables 357
Advanced theming 358

Adding new gradients 358
Styles for the tabs 362
Styling the panel 367

Different styles for the same component 370
Supporting legacy browsers 373
Summary 376

Chapter 13: From Drawing to Charting 377
Basic drawing 378
Adding interaction 382
Charts 384

Legend 384
Axis 385
Gradients 385
Series 386
Theming 386

Series examples 386
Area 387
Bar 389
Line 391
Pie 394
Radar 395
Scatter 397
Gauge 399

Enhancing our application with charts 400
Summary 406

Index 407

Preface
Before we started writing this book we thought about the issues we have faced when
we started learning this framework. Over the years we have made many mistakes
and faced a lot of troubles because of the lack of a good guide and unavailability of
the proper documentation. We wrote this book thinking about the new developers,
who want to dive into the library, and the way we would have liked to have a guide
when we started.

Whether you are a beginner or a mid-level developer this book will take you to the
next level. Ext JS 4 is one of the best JavaScript frameworks out there; with all its
components, developing enterprise web applications is a breeze. The main power
of the Ext JS 4 library is its class system. It has been so well designed and well
implemented that the result is a really powerful set of JavaScript tools that will
boost our development.

This book covers all the information you need to know when starting with this
awesome framework.

What this book covers
Chapter 1, The Basics, covers an explanation for why there are so many folders
and files when you download the library, the installation of the library, and a
quick review of the Sencha Architect, a software to develop prototypes and
applications faster.

Chapter 2, The Core Concepts, is about the awesome Class System. You will learn how
to implement Object Oriented Programming with Ext JS. We will also cover the
Loader System to define and require dependencies dynamically.

Chapter 3, Components and Layouts, talks about the component lifecycle and how to
take advantage of it. We will also talk about the most important and commonly used
layouts in the library.

Preface

[2]

Chapter 4, It's All About the Data, covers the data package and how to manipulate our
data in order to display it on any widget or component.

Chapter 5, Buttons and Toolbars, talks about events and how to listen to your
own events, we also cover some of the most popular configurations for buttons
and toolbars.

Chapter 6, Doing it with Forms, provides information about forms and the types
of input fields, which are available in the library, as well as how to submit the
introduced user's data.

Chapter 7, Give me the Grid, covers the grid panel and its implementations, the
column model, grid renderers, selection models, and listeners are explained here.
It also covers two new concepts of Ext JS 4 features and plugins. Features like
grouping row body and plugins like cell editing, row editing, and infinite scrolling
are explained here.

Chapter 8, Architecture, is one of the most important chapters in the book. We describe
how to define our folder structure and the way we should use the MVC pattern in
order to distribute our code's application wisely.

Chapter 9, DataViews and Templates, covers how we can use DataViews to render
our data and how to use Templates to give format to that data. This chapter shows
how events can be implemented on DataViews and how we can add basic logic
to Templates.

Chapter 10, The Tree Panel, covers the tree panel and its implementations, drag and
drop, the tree store, the check tree, and the grid tree. This chapter also shows a real
world example implementation of a tree panel.

Chapter 11, Drag and Drop, covers the basics of drag and drop in Ext JS 4. It
covers how easy it is to implement the drag and drop behavior between Ext JS 4
components and how we can optimize our applications using drag and drop.

Chapter 12, Look and Feel, covers how we can create a custom design for the UI
components. We can customize any of the available components using Compass
and SASS.

Chapter 13, From Drawing to Charting, covers how the drawing and charting package
works in Ext JS 4, how series like Area, Pie, Radar, Line, Bars, and more can be easily
implemented, and how they can be used in a real world application. It is important
to mention that these implementations are flash free.

Preface

[3]

Chapter 14, Finishing our Application, covers the Sencha Command, so we can prepare
our application for a production environment. We also talk about some very useful
plugins and extensions from the community.

Chapter 15, Ext JS 4 Next Steps, provides information to create the documentation of
our applications using JSDuck, how we can use Sencha Touch 2 for mobile versions
of the applications, and what other resources can help when developing applications
with Ext JS 4.

Chapter 14, Finishing our Application, and Chapter 15, Ext JS 4 Next Steps, are not
present in the book but are available for download at the following links:

http://www.packtpub.com/sites/default/files/downloads/6846OS_14_Final

http://www.packtpub.com/sites/default/files/downloads/6846OS_15_Final

Who this book is for
This book is for a beginner as well as a mid-level Ext JS 4 developer.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "The build folder contains the descriptor
files to create a custom version of the Ext JS library."

A block of code is set as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>First program</title>

Preface

[4]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<!-- Importing our application -->
<script type="text/javascript" src="app.js"></script>

</head>
<body>
</body>

Any command-line input or output is written as follows:

$[sudo] gem install jsduck

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "The
previous screenshot shows the code editor region, where we can edit the code
and see it in action just by clicking on the Live Preview button."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Preface

[5]

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

The Basics
When learning a new technology such as Ext JS it's complicated to find good
material. We have to go from the library documentation to blogs and forums looking
for answers, trying to figure out how the library and all the components work
together. Even though there are tutorials in the official learning center, it would be
great to have a guide to learn the library from the basics to a more advanced level;
this is the main goal for this book.

Ext JS is a state of the art framework to create Rich Internet Applications (RIAs).
The framework allows us to create cross-browser applications with a powerful set
of components and widgets. The idea behind the framework is to create user-friendly
applications in rapid development cycles.

This book will walk you through the very beginning, explaining to you why there
are so many files when you download the library for the first time, and showing you
the meaning of all the files and folders. We will learn when and how to use the
library in every stage of the process of creating our first application and how we can
make the components work together. We will also learn about architecture and how
to use the Model-View-Controller (MVC) pattern in order to write maintainable and
scalable code.

We will define layers to delegate specific responsibilities to each of them in order
to have reusable code. Finally, we will learn how to prepare our code to deploy our
application in a production environment, we will compress and obfuscate our code
to be delivered faster.

Ext JS is not just a library of widgets anymore; the brand new version is a framework
full of new exciting features for us to play with. Some of these features are the new
class system, the loader, the new application package, which defines a standard way
to code our applications and many more awesome stuff.

The company behind the Ext JS library is SenchaInc., they are working on great
products that are based on web standards.

The Basics

[8]

In this chapter, we will cover the basic concepts of this new framework. We'll learn
how to import the library, the available tools to write our code, and we'll define the
application that we'll build through the chapters of this book:

• Should I use Ext for my next project?
• Getting started with Ext JS
• Our first program
• Editors
• Building an application

Should I use Ext JS for my next project?
Ext JS is a great library to create RIAs that require a lot of interactivity with the user.
If you need complex components to manage your information then Ext is your best
option because it contains a lot of widgets such as the grid, forms, trees, panels, and
a great data package and class system.

Ext JS is best suited for enterprise or intranet applications; it's a great tool to develop
an entire CRM or ERP software. One of the more appealing examples is the Desktop
sample (http://dev.sencha.com/deploy/ext-4.1.0-gpl/examples/desktop/
desktop.html), it really looks and feels like a native application running in the
browser; in some cases this is an advantage because the users already know how to
interact with the components and we can improve the user experience.

Ext JS 4 came out with a great tool to create themes and templates in a very simple
way. The framework for creating the themes is built on top of Compass and Sass, so
we can modify some variables and properties and in a few minutes we can have a
custom template for our Ext JS applications. If we want something more complex or
unique we can modify the original template to suit our needs. This might be more
time consuming depending on our experience with Compass and Sass.

Compass and Sass are extensions for CSS. We can use expressions,
conditions, variables, mixins, and many more awesome things to generate
well formatted CSS. We can learn more about Compass on their own website
at http://compass-style.org/.

The new class system allows us to define classes incredibly easily. We can develop
our application using the object-oriented programming paradigm and take
advantage of the single and multiple inheritance. This is a great advantage because
we can implement any of the available patterns such as the MVC, Observable, or
any other. This will improve our code.

Chapter 1

[9]

Another thing to keep in mind is the growing community around the library, there
are lot of people around the world that are working with Ext JS right now. You can
even join the meeting groups that have local reunions frequently to share knowledge
and experiences, I recommend you to look for a group in your city or create one.

The new loader system is a great way to load our modules or classes on demand.
We can load only the modules and applications that the user needs just in time.
This functionality allows us to bootstrap our application faster by loading only the
minimal code for our application to work.

One more thing to keep in mind, is the ability to prepare our code for deployment.
We can compress and obfuscate our code for a production environment using the
Sencha Command, a tool that we can run on our terminal to automatically analyze
all the dependencies of our code and create packages.

Documentation is very important and Ext JS has a great documentation, very
descriptive with a lot of examples, and code so that we can see it in action right on
the documentation pages, we can also read the comments from the community or
even help by commenting and extending the API content.

We should know that Ext JS has a dual license option for us. If we want to develop
an open source project, we need to use the GPLv3 license for our own project, this
way we don't need to pay a license for Ext. But, if we want to develop a commercial
project and we don't want to share our code with the world, we have to buy a license
for Ext JS on Sencha's website at http://www.sencha.com.

Getting started with Ext JS
Enough talking, let's start our journey! The first thing we should do is download the
framework from the official website, http://www.sencha.com/products/extjs/.
The version available at the time of writing this book is 4.1.1.

There are two types of licenses. The commercial license that you need to buy if you
are planning to develop a closed source project, usually used for corporations, banks,
or enterprises. The other available license is the GPLv3 for open source projects.
Choose the license that meets your needs.

When you download and extract the library for the first time, probably you will
get overwhelmed by the size of the zip and by the number of files and folders,
but don't worry, the purpose of each file and the content of each folder will be
explained shortly.

The Basics

[10]

We can also use the available Content Delivery Network (CDN) so we don't need to
store the library in our own computer or server:

• The CSS file: http://cdn.sencha.io/ext-4.1.0-gpl/resources/css/
ext-all.css

• The JavaScript file: http://cdn.sencha.io/ext-4.1.0-gpl/ext-all.js

Looking at the whole picture
Before we start writing code we need to learn and understand a few concepts first.
Ext JS is divided in three layers, as shown in the following screenshot. The purpose
of these layers is to share code with Sencha Touch, a framework to create mobile
web applications:

In the Ext Foundation layer the Ext object is created, as well as some useful
utilities and the class system that allows us to extend classes, override methods and
properties, add mixins and configurations to classes, and many more things.

The Ext Core layer contains the classes that manage the Document Object
Model(DOM), setting and firing events, support for Ajax requests, and classes to
search the DOM using CSS selectors.

Finally the Ext JS 4 layer contains all the components, widgets, and many more
features that we're going to be learning in this book.

Chapter 1

[11]

Why so many files and folders?
This is a natural question when you look at the downloaded files and folders for the
first time, every file and folder is there for a purpose and now you're going to learn it:

• The build folder contains the descriptor files to create a custom version of
the Ext JS library. In here, we can find the JSB3 files that describe the files and
packages to build the library from the source code. These JSB3 files will be
used by the JavaScript Builder utility that we will learn to use later in this book.

• The builds folder contains the minified version of the library; we find the
foundation, the core, and the Ext JS sandboxed version of the library. The
sandboxed version allows us to run Ext 4 and any older version of the Ext
library on the same page.

• The docs folder contains documentation of the API. Just open the index.
html file and you're going to see the packages and classes with all the
configuration, properties, methods and events available, guides and tutorials,
links to watch videos online, and examples.

• The examples folder contains a lot of examples of the components, layouts,
and small applications that are built to show what we can do with the
library. Open the index.html file and explore the samples and demos by
yourself. It's important to say that some of them need to run on a web server,
especially those that use Ajax.

• The locale folder has the translations of 45 languages. By default the
components are displayed in English, but you can translate them to any
other language.

• The jsbuilder folder contains the tool to build and compress our source
code; the tool is written in Java and uses the YUI Compressor to improve file
minification. The minification process allows us to create packages with all
the classes and files that are needed in our application, this is an important
step before deploying our application in production.

• The src folder contains all the classes of the framework. Each class is in
its own file so we can read it easily, and every folder corresponds to the
namespace assigned to the class. For example, the class Ext.grid.Panel is
in a file called Panel.js that is in a folder called grid (src/grid/Panel.js).

The Basics

[12]

• The resources folder is where the styles and images are located; also we can
find the Sass files to create our custom theme in here. Sass is an extension of
CSS3 to improve the language; we can use variables, mixins, conditionals,
expressions, and more with Sass.

• The welcome folder contains the styles and images that are shown when we
open the index.html file in the root folder.
If you look at the root folder you can also see other JavaScript files. Basically,
they are the compressed, debug, and development versions of the library.

• The ext-all.js file is the complete library with all the components, utilities,
and classes. This file is minified so we can use it for a production environment.

• The ext-all-debug.js file is the same as the ext-all.js file, but it is not
minified so we can use this file to debug our application.

• The ext-all-dev.js file is similar to the ext-all-debug.js file but
contains additional code to show more specific errors and warnings at
development time; we should use this file when developing our application.

• The ext.js file is the core and foundation layer for Ext JS. If we use this file,
we're not loading the whole library; this file contains only the class system,
the loader, and a few other classes. We can use the Ext.Loader class to load
just the required classes and not the entire framework; we should use this file
only in development environments.

• The ext-debug.js and ext-dev.js files follow the same concept as
mentioned with the ext-all files. The ext-debug.js file is an exact version
of the ext.js file but is not minified. The ext-dev.js file contains extra code
to log more specific errors in a development environment.

Now that we have a basic understanding of the downloaded files and folders we can
go to the next step and get our hands on some code.

Our first program
We need to setup our workspace to write all the examples of this book. Let's create
a folder named learning-ext-4. For now we don't need a web server to host our
examples, but in the following chapters we are going to use Ajax; therefore, it's a
good idea to use our favorite web server to host our code from these first examples.

In our new folder we are going to create folders that contain the examples for
each chapter in this book. At this point we have a folder called 01-basics that
corresponds to this chapter and other called extjs-4.1.1 that contains the Ext JS
framework. Both folders are located at the same level.

Chapter 1

[13]

Inside the 01-basics folder we're going to create a file called installation.html,
where we need to import the Ext library and create a JavaScript file called app.js
that will contain our JavaScript code:

Let's open the installation.html file in our favorite editor and type the
following code:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>First program</title>

<!-- Importing the stylesheet for the widgets -->
<linkrel="stylesheet" type="text/css" href="../extjs-4.1.1/resources/
css/ext-all.css">
<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1/ext-all-dev.js"></
script>

<!-- Importing our application -->
<script type="text/javascript" src="app.js"></script>

</head>
<body>
</body>
</html>

The Basics

[14]

Downloading the example code
You can download the example code files for all Packt books
you have purchased from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

The previous code shows how to import the library for a development environment.
First we import the stylesheet that is located at extjs-4.1.1/resources/css/
ext-all.css, the second step is to import the whole library from extjs-4.1.1/
ext-all-dev.js. Now we're ready to write our code in the app.js file.

Before we can start creating widgets we need to wait until the DOM is ready to be
used. Ext JS provides a function called Ext.onReady, which executes a callback
automatically when all nodes in the tree can be accessed. Let's write the following
code in our app.js file:

Ext.onReady(function(){
alert("We're ready to go!");
});

One of the advantages of using Ext JS is that the library only uses one single object in
the global scope called Ext to allocate all the classes and objects within the framework.

If you open the HTML file in your favorite browser you will see something like the
following screenshot:

Chapter 1

[15]

Feel free to use your favorite browser to work through the examples
in this book. I recommend you to use Google Chrome because it has
more advanced developer tools and it's a fast browser. If you are a
Firefox fan, you can download the Firebug plugin, it's a powerful
tool that we can use for debugging on Firefox.

If for some reason we can't see the alert message in our browser, it's because we
haven't defined the correct path to the ext-all-dev.js file. If we look at the
JavaScript console, we'll probably see the following error:

Uncaught ReferenceError: Ext is not defined

That means that the ext-all-dev.js file is not imported correctly. We need to make
sure everything is correct with the path and refresh the browser again.

Now that we know how to execute code when the DOM is ready, let's send an alert
message from the Ext library. Using the Ext.Msg object we can create different
types of messages such as an alert, confirmation, prompt, progress bar, or even a
custom message:

Ext.onReady(function(){
//alert("We're ready to go!");
Ext.Msg.alert("Alert","We're ready to go!");
});

The Basics

[16]

If you're not getting any errors in the JavaScript console,
but still you can't see the message on the screen, as seen
in the preceding screenshot, make sure you have inserted
the stylesheet correctly.

In this case we're using the alert method of the Ext.Msg object. The first parameter
is the title of the message and the second parameter is the content of the message.
That was easy, right? Now let's create a confirmation dialog box:

Ext.onReady(function(){
//alert("We're ready to go!");
Ext.Msg.alert("Alert","We're ready to go!");
Ext.Msg.confirm("Confirm","Do you like Ext JS?");
});

We use the confirm method to request two possible answers from the user. The first
parameter is the title of the dialog box and the second parameter is the question or
message we want to show to the user:

Chapter 1

[17]

Before the confirmation dialog box appeared there was an alert that didn't show up.
One important thing to keep in mind is that the messages and alerts from the Ext
library don't block the JavaScript loop, unlike the native browser dialog box. This
means that if we add another alert or custom message after the confirm method is
called, we shall not see the confirmation dialog box anymore.

So far we have shown a confirmation dialog box requesting two possible answers
to the user, but how can we know the user's response in order to do something
according to the answer? There's a third parameter in the confirmation dialog box
that is a callback function that will be executed when the user clicks on one of the
two answers:

Ext.onReady(function(){
//alert("We're ready to go!");
Ext.Msg.alert("Alert","We're ready to go!");

Ext.Msg.confirm("Confirm","Do you like Ext JS?",
function(btn){
if(btn === "yes"){
Ext.Msg.alert("Great!","This is great!");
}else{
Ext.Msg.alert("Really?","That's too bad.");
}
});
});

The callback function is executed after the user clicks on the Yes or No button or
closes the confirmation dialog box. The function receives as a parameter the value
of the clicked button which is Yes or No; we can do whatever we want inside of
the callback function. In this case we're sending a message depending on the
given answer. Let's refresh our browser and test our small program to watch our
changes. Confirmations are usually asked when a user wants to delete something,
or maybe when he/she wants to trigger a long process, basically anything that has
only two options.

Editors
Before we move on it's important to use the right tools in order to be more
productive when building applications. There are many editors we can use to
write our code. Let's review some of them.

The Basics

[18]

Sublime Text 2
The Sublime Text 2 editor is a very light and fast editor. We can add many plugins
to have a powerful development environment. The team behind this software
is actively working on new improvements and new features; we have updates
almost every day (if we compile the editor from the source code at github).
The package manager for plugins works greatly to install new software from
third-party developers.

We can use an evaluation version that never expires, but it's really worth buying the
license for this great editor.

If we decide to work with this editor, we should use the JavaScript Lint plugin
to validate our code every time we save our file (https://github.com/Kronuz/
SublimeLinter). Code completion is always welcome, we have a plugin for that
too, which is available at https://github.com/Kronuz/SublimeCodeIntel. And,
of course, a snippet package for writing common Ext JS 4 code can be found at
https://github.com/rdougan/Sencha.sublime:

Chapter 1

[19]

Eclipse Web Tools Platform project
The Eclipse editor is one of the most used editors out there. If you add the web tools
plugin into the platform, you can get a JavaScript syntax validation, an Ext JS class
autocomplete, HTML and CSS validation. The downside of these tools is that they
require a lot of resources from your computer, but if you have enough RAM, this is a
good option for writing your code:

The previous screenshot shows the autocomplete class in action. As you can see
when you type Ext you can select a class from the list. If you keep typing, it filters
the classes that match your text.

You need to use the Spket plugin for adding the autocomplete functionality for
Ext JS or any other JavaScript library. We can find the required steps to setup the
Spketplugin at http://www.spket.com/extjs.html.

The Basics

[20]

Aptana
The Aptana editor is an IDE from Appcelerator. It's based on Eclipse but optimized
for web applications. It's an open source project and free of charges.

Among other things, Aptana contains an autocomplete functionality for JavaScript
and Ext JS, a JavaScript validator, CSS and HTML validator, a JavaScript debugger,
Bundles, and so on:

Aptana is a great tool when working with Python, Ruby, or PHP as the backend of
our projects. It contains tools to work with those out-of-the-box languages and also
contains tools to deploy your application in the cloud using Heroku or Engine Yard.

Chapter 1

[21]

Textmate
The Textmate editor is a light and fast editor for Mac OS. It's not free, but it's worth
what you pay for. Textmate doesn't have an autocomplete functionality like Aptana
or Eclipse, but it contains bundles to automate some repetitive tasks such as creating
classes, documenting methods, properties, and things like that. I suggest you
download the available bundles for Ext JS from https://github.com/edspencer/
Sencha.tmbundle or create a custom bundle to automate these tasks:

The Basics

[22]

Sencha Architect
The Sencha Architect desktop application is a tool that will help you design and
develop an application faster than coding it by hand. The idea is to drag-and-drop
the components into a canvas and then add the functionality. The Sencha Architect
desktop application is a product from Sencha Inc. that aims to help developers
to define components with a few clicks. We can create an Ext JS or Sencha Touch
project. We can get a free trial from the official website of Sencha, we can also buy
the license there.

To start our application we need to create a project for Ext 4. The Sencha Architect
desktop application will show an empty canvas in the center, the available
components and classes on the left-hand side, a project inspector and a configuration
panel in the right-hand side:

Chapter 1

[23]

Now let's create a simple application with this tool. First we need to drag a viewport
component from the left-hand side panel into the canvas; the width and height are
set automatically. The viewport always takes all the available space on our browser.

The next step is to add a Tab Panel section inside the viewport. To do this let's drag
the component to the viewport. We can change the title of the tabs by clicking in the
text and typing the new title; in this case we're going to set General, Groups, and
Contacts for each tab. At this point we haven't set the height of the Tab Panel section;
we can set the height in the Property panel at the right-hand side or by dragging the
border of the panel. Another option is to set the layout property of the viewport to fit,
this will expand the Tab Panel section to fit the viewport. Just select the viewport and
in the Property panel, look for the layout property and select fit from the combobox:

Let's add a form to the General tab by dragging the form panel component to the
tabs container. We will see an empty form with the title MyForm. Let's look for the
title property in the Property panel at the right-hand side and delete the title. We
can also set the border property to zero in order to get rid of the border.

The Basics

[24]

So far we have an empty form in the General tab, let's add some text fields to the
form by dragging them to the empty form. For this example let's set the label of
these fields to Name and Last name. Now let's add a field date and a text area for
the Birthdate and Comments field:

As we can see it's pretty simple and fast to create prototypes or interfaces with this
tool. Now that we have our application let's see it in action, we just need to save our
project and then click on the Preview button at the top bar. A prompt dialog box
will appear asking us for the prefix of our application where our project is located.
In here we can use http://localhost/learning-ext-4/01-basics/architect/,
if we are using a web server. A new window of our default browser will open with a
working example of the components that we have designed; we can play with it and
see how it is working:

Chapter 1

[25]

If we want to see the code that is generated, we need to go to the folder where we
save our project. In there we will see all the files and classes that have been created
for this small example.

The Sencha Architect desktop application is a great tool to build our interfaces. At
the time of writing this book the application allows us to modify the code directly in
the Architect, but this is not as easy as using a text editor or IDE.

Throughout the chapters of this book we're not going to use the Sencha Architect
desktop application. I believe it's a good idea to understand how to create the
components by code and once we know the basics we can use the Sencha Architect
desktop application even better. If you are interested in using this tool, you should
read the documentation that is available online on Sencha's official website.

The Basics

[26]

Building an application
In this book we're going to be building a small invoice application. This will help us
learn the most commonly used components in the library and the way they interact
with each other. Most of the code and examples presented in this book are used to
create the UI for the final application.

There are two approaches when we develop an application with Ext JS. We can use
only a few widgets and render them within the HTML page in a specific div element
along with other things and load as many pages as the system needs just like any
other traditional web application. This is the first approach.

The second approach is to create a single web page application and only load data
using Ajax and REST to transfer our data using JSON or XML. There's no need to
create multiple views or pages in our project. We only need one and then we will
dynamically create the required Ext JS components.

In this book we will go for the second option. We're going to develop a single web
page application, loading our data using JSON. We're going to compress and minify
our source code using the Sencha tools in order to deploy our application in a
production environment.

The downside of this approach is that we lost the browser history. When the user
clicks on the back button of the browser he/she will be redirected to the last visited
page. Gmail, Twitter, and some other sites that use this approach usually append
a hash tag to the URL in order to simulate and keep track of the user history. Ext
JS comes with a solution for these issues and we can take advantage of that by
implementing the required utilities.

Planning our application
We're going to build an application to handle clients and categories of invoices. The
client's module should display a list of clients with the basic information about them.
The application should allow the user to see and edit the details of the selected client
in the list.

The categories module should allow the user to manage the invoices categories in
a tree. The user should create children nodes from any existing category. If the user
deleted a category that has invoices, then the category and its invoices should be
deleted as well. We will be able to drag-and-drop invoices to any of the categories
on the tree. We will allow the user to re-order the categories by dragging them with
the mouse.

Chapter 1

[27]

Wireframing
Before we start coding we should define the requirements about how we are
going to do our application using wireframes, so we can have a better idea of the
final product.

A wireframe is just a sketch of how we will create the layout
of our modules. I'm using a free tool at mockflow.com, but
we can even use a piece of paper and pen.

First we define the main menu using a toolbar at the top of the viewport. This menu
will contain the modules that we need and also it will display the name of the logged
user in the right-hand side of the toolbar. The viewport is a component that takes all
the available space on the browser, therefore we should have only one viewport in
our application:

For the main content we're going to use tabs to display each module. When the user
clicks on any option of the main menu a new tab will be opened. The user should be
able to close the tab when he/she finishes his/her tasks.

The Basics

[28]

The Clients module, in the left-hand side, will contain a grid with the current clients
in the application and in the right-hand side will be the form to create or edit a client.
The module should look as the following screenshot:

When the user clicks on one of the clients of the grid, the form will be filled with the
information of the selected client to be edited or deleted.

The New button will clear the form so the user can start filling the form with the
information of a new client.

The Save button will submit the form data to the server in order to be saved. The
server will create a new record or update the existing client in the database based
on the sent ID.

The Delete button will remove the client from the database. Before sending the
request the application should ask for confirmation. After the server responds with
a success message, the form should be cleared and a feedback message should be
displayed informing that the client has been deleted successfully. If an error occurs
while deleting, an error message should be shown.

Chapter 1

[29]

The second module manages the categories; we need to show a tree in order
to display the categories correctly. Each time the user expands a category
the application will make a request to the server asking for the children of
the selected category:

The Add button will create a new node in the tree panel as a child of the selected
category. If there's no selected category then the new category will become a child
of the root node.

The Delete button will delete the category and all its children. For this action the
application should ask for confirmation from the user.

The user will be able to drag-and-drop any of the invoices on the right-hand side
panel to any of the categories on the left-hand side tree. We will also allow the user
to re-order the categories on the tree by dragging them on the position they want.

The Basics

[30]

Data structure
We need to define our models and how they are related to each other. According to
the given requirements we need only three models, each of them are described as
follows, as well as their fields:

• Client: This describes a client entity.
This model contains ID, name, contact, address, and phone fields.

• Category: This is used to classify many invoices.
This model contains ID, owner, name, created at fields.

• Invoice: This belongs to one category and describes an invoice entity.
This model contains ID, category ID, name, date fields.

The following diagram represents the relationships between the models:

Ext JS 4 came with a great data package. We can define each of the previous models
in a class that represents each entity; for now we're just defining and preparing
things to start developing our application.

Chapter 1

[31]

File structure
We are going to use Ajax to load and send data. In order to start developing we're
going to need a web server. I suggest you use Apache because it's easy to install
using some of the all-in-all packages such as XAMP or WAMP. If you are using a
Mac OS you already have an installed Apache server, just turn it on by going to the
Settings and Sharing configurations.

It's important to note that programming the services that manage the requests on the
server side, to save and delete the information in the database, are out of the scope
of this book. We're going to focus our attention on Ext JS programming and defining
the JSON format to transfer the data. You can use whatever server-side language you
want such as PHP, Python, Ruby, and so on to deal with the database.

Once you have your web server up and running create a learning-extjs-4
folder in the public content of your server. Inside that folder we will copy the Ext
JS framework with all the files and folders that we have downloaded before. We
are going to create a folder for each chapter of this book where we will create our
examples. At the end we will have something like in the following screenshot:

The Basics

[32]

Summary
In this chapter, we learned important concepts about the Ext JS library, such as the
three layers in which the library is divided. We also learned the meaning of the files
and folders that the Ext library has, importing the library, and the troubles we may
have. We also have reviewed a few editors that will help us to be more productive in
doing our job. Feel free to use your favorite editor.

Throughout the course of the book we're going to learn about the components and at
the same time we're going to build an application using what we have defined in this
chapter. In the next chapter, we're going to learn about how to create object-oriented
JavaScript using the amazing class systems that come with the latest version of the
Ext JS library; also we'll learn about DOM manipulation and events.

The Core Concepts
In this chapter we're going to learn about the new class system that version four
introduces. There are a lot of new features to take advantage of in this version.
We are also going to learn how to load classes dynamically and how to interact
with the Document Object Model (DOM) to modify the structure of the tree to
our convenience.

We should know that in JavaScript, classes don't exist; however we can emulate
them using the prototype object and other techniques. One of the major features
about Ext JS is the way we can emulate object-oriented programming.

It's important to mention that you should know and understand the concepts
of object-oriented programming. In this chapter we are not going to explain
the concepts, but instead we are going to learn how to implement those concepts
using Ext JS.

The following are the main topics in this chapter. We need to understand these
concepts well before moving on to other parts of the library.

• The class system
• Loading classes on demand
• Working with the DOM

The class system
Since the beginning, Ext JS has been an object-oriented library. In the latest version
the class system was completely redesigned and new features were added. It became
more powerful for extending and creating classes.

The Core Concepts

[34]

In order to create classes Ext JS uses the Ext.ClassManager object internally to
manage the associations between the name we defined and the actual class object
in the whole framework. It's not recommended to use this class directly; instead
we should use the following shorthand:

• Ext.define: This shorthand internally calls the create method from the
class manager in order to create a new class. In addition we can override
methods and properties from an existing class.

• Ext.create: This shorthand is an alias for the instantiate method
from the class manager. We can use this shorthand to create objects from
an existing class.

• Ext.widget: This shorthand calls the instantiateByAlias method to create
instances of the given alias. An alias is a short name for a class.

Let's create our first class using the first shorthand in the preceding list. In a new file
called Client.js we need to write the following code:

Ext.define("MyApp.Client",{ //Step 1
 name : "John", //Step 2
 lastName : "Doe",

 constructor : function(config){ //Step 3

Ext.apply(this,config || {}); //Step 4

 console.log("I'm a new client!");
 }
});

In the first step we defined the name of our class by passing a string as the
first parameter of the Ext.define function. In this case we're defining
MyApp.Client class.

The second step is to define the properties and methods for our new class. We pass
an object as the second parameter of the define method. In this case we are defining
the name and the last name for the client.

Step three defines a special method. The manager class looks for a constructor
method that will be used when the class is created. If we don't define this method,
an empty function will be used instead.

In the last step we are setting the new values to the new instance that is being
created. The config object should have the properties that we can modify; this way
we can set different values for the new objects that will be created. If we don't pass
any parameters when we create a new instance the default values will be applied.

Chapter 2

[35]

When working on real world applications we should always
use a namespace to create our classes. In this example
we've used MyApp but that wouldn't be enough for a big
application, something like MyApp.modules.accounting.
Client would be better. A namespace allows us to group
classes or objects and avoid collisions.

Once we have defined our class we can create instances by using the Ext.create
method as follows:

//creating an instance of Client
var client = Ext.create("MyApp.Client");

console.log(client.name); //Print the default value: John

The create method receives, as a first parameter, the name of the class that we want
to instantiate, in this case MyApp.Client.

If we want to change the default values of the name and last name properties, we
should create an object containing the new value for each property.

//creating an instance of Client
//with params
var client2 = Ext.create("MyApp.Client",{
name : 'Susan',
lastName: 'Smith'
});

console.log(client2.name); //Print the new value: Susan

In order to run the example, we need to create an HTML page, import the Ext JS
library and the client class, after that we can execute the preceding code.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>First class</title>

<!-- Importing the stylesheet for the widgets -->
<linkrel="stylesheet" type="text/css" href="../extjs-4.1.1/resources/
css/ext-all.css">
<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1/ext-all-dev.js"></
script>

The Core Concepts

[36]

<!-- Importing the client class -->
<script type="text/javascript" src="js/Client.js"></script>

 <script type="text/javascript">
 //creating an instance of Client
 var client = Ext.create("MyApp.Client");

 console.log(client.name);

 </script>

</head>
<body>
</body>
</html>

Let's open the HTML file in our favorite browser and the JavaScript console by
pressing Ctrl + Shift + I (shortcut for Windows users) or Cmd + Option + I (shortcut
for Mac users) to open the developer tools in Google Chrome. If you're using Firefox,
the shortcut to show the JavaScript console is Ctrl + Shift + K (for Windows users) or
Cmd + Option + K (for Mac users). If you are using Internet Explorer 8 or above, press
F12 key to open the developer tools, where the JavaScript console is present. If you
are using a different browser, the key shortcuts would be different. We should see in
the JavaScript console two log messages as in the following screenshot:

Chapter 2

[37]

The first message is printed in the constructor method that is executed when the
Client class is created. The second message is printed when we have the instance
and we have accessed the name property.

Once we have the instance of the Client class, we can modify its properties by
assigning the new value.

client.name = "Carl";

console.log(client.name);

If we refresh our browser we shall see a new message in the console and with the
new value. We can create as many instances as we want from our class and everyone
would have the same properties and methods. However, we can change their values
individually or even pass an object to the constructor with the properties that we
want to change.

Simple inheritance
When we create a class using the Ext.define method we're extending from the
Ext.Base class. This class contains abstract methods that will be inherited to all the
subclasses so we can use them to our convenience.

In our previous example the Client class extends from the Base class. We didn't
have to do anything special to accomplish that. By default, if we don't configure a
class to extend from any other class, it extends from the Base class. We should keep
this in mind.

Most of the classes in the Ext library extend from the Ext.Base class, however there
are a few core classes that don't. The following screenshot shows the inheritance tree
for the button and model components:

The Core Concepts

[38]

As we can see the root of the tree is the Ext.Base class, which means that the button
and model components share the same methods defined in the Base class.

In order to extend from any other class we need to define the extend property
to our new class; this will allow us to inherit all the methods and properties from
the parent.

Ext.define("MyApp.Category",{
 extend : "Ext.data.Model", //Step 1

 fields : [//Step 2
 "id",
 "name",
 "description"
]

});

In the first step we have created a class that extends from the Ext.data.Model class
just by adding the extend property and assigning the name of the superclass.

In the second step we defined the fields of the category, in this case id, name, and
description. We can define as many fields as needed just by adding more entries to
the list of fields.

Once we have our class, let's create instances to hold our data. First we need to create
an HTML file that includes the Ext library and the category class.

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Inheritance</title>

<!-- Importing the stylesheet for the widgets -->
<linkrel="stylesheet" type="text/css" href="../extjs-4.1.1/resources/
css/ext-all.css">
<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1/ext-all-dev.js"></
script>

<!-- Importing the category class -->
<script type="text/javascript" src="js/Category.js"></script>

 <script type="text/javascript">
 var category = Ext.create("MyApp.Category",{
 id : 1,
 name : "Entertainment",

Chapter 2

[39]

 description : "Expenses to have some fun"
 });

 console.log(category.get("name"));
 console.log(category.get("description"));
 </script>

</head>
<body>
</body>
</html>

We used the Ext.create method to create an instance of the Category class. In this
example we're passing two parameters. The first one is the name of the class and the
second one is an object with the fields we want to assign a value.

Let's open the HTML file in our browser and look at the JavaScript console. We should
see the name and description fields we have entered when creating the instance.

One important thing to highlight in the previous code is the use of the get method.
We didn't write any line of code to define this method, however because we are
extending from the Ext.data.Model class we can use any method or property from
this class or even overwrite an existing method.

Pre-processors and post-processors
Every class in Ext JS is an instance of the Ext.Class class. When we use the
Ext.define method to define a class we are in fact creating an instance of the
Ext.Class class.

According to the documentation the Ext.Class class is a factory. It doesn't mean
that our classes extend from the Ext.Class class. As mentioned before all classes
extend from the Ext.Base class. What this really means is that when we use the
Ext.create method Ext runs processes behind the scenes. Each process is a task
with a specific purpose in the whole process of creating the class.

A process may be asynchronous or not, for example, we have a pre-processor that
loads all the dependencies for our new class if they are not already loaded. When
the pre-processor finishes its tasks, the next process is executed until the list is empty
and our new class is created.

A pre-processor is a process that runs before the instance of an Ext.Class class is
created, or in other words, before our new class is created. Each of the processes
defined will change the behavior of our class, if needed.

The Core Concepts

[40]

A post-processor is a process that runs after our new class is created. There is a
process to make our class as singleton, to define alternative names to our class,
and a few other processes.

There are a few processes defined by the Ext library, but we can define our own and
add them to the process queue if we want.

The question now is, what processes are we talking about? And what do they do? If we
want to see the list of registered processes, we can execute the following lines of code:

var pre = Ext.Class.getDefaultPreprocessors(),
post = Ext.ClassManager.defaultPostprocessors;

console.log(pre);
console.log(post);

By running the previous code in a browser we should see in the JavaScript console
the following messages:

 ["className", "loader", "extend", "statics", "inheritableStatics",
"config", "mixins", "xtype", "alias"]
["alias", "singleton", "alternateClassName", "uses"]

The following screenshot represents the flow of the class creation with the
pre-processors and post-processors:

Chapter 2

[41]

This is what happens when we create a class. All the pre-processors run before the
class is ready, modifying the result. The post-processors on the other hand run when
the class is ready to be used.

For example, the loader process looks for the dependencies and if they are not
present, it tries to load them synchronously. After all the dependencies are ready, it
passes the control to the Ext.Class class in order to continue with the next process.
The following process in the queue is extend, which is responsible for copying all
the prototype methods and properties from the superclass to the subclass.

The following table shows a brief description of all the pre-processors that may be
executed to create a new class:

className This defines the namespace and the name of the class.
loader This looks for the dependencies and if they don't exist

already then it tries to load them.
extend This inherits all the methods and properties from the

superclass to the new class.
statics This creates the defined static methods or properties

for the current class.
inheritableStatics This inherits the static methods or properties from

the superclass, if applicable.
config This creates the getters and setters for the

configurations properties.
mixins This inherits all the methods and properties from the

mixin classes.
xtype This defines the xtype for the new class.
alias This sets the alias for the new class.

Once the class is created the following post-processors are executed:

alias This registers the new class to the class manager and
its alias.

singleton This creates a single instance of the new class.
alternateClassName This defines alternative names for the new

class created.
uses This imports the classes that will be used, along with

the new class.

There will be times when some processes won't run; this depends on how we
configure or define our classes. Probably we didn't define dependencies or statics
properties, so then those processes will be ignored.

The Core Concepts

[42]

Now that we have a basic understanding on how the class system works, we can
continue learning how we can define our classes using the available processes and
take advantage of them.

Mixing many classes
So far we have learned about simple inheritance, but we can also mimic multiple
inheritance using the mixins processor. The concept is really simple; we can mix
many classes into one. As a result, the new class will have access to all the properties
and methods from the mixed classes.

Let's suppose we need to create an application that represents a competition program
for figure skaters and ice dance skaters. A competition program is a sequence of
jumps, spins, and footwork; the judges qualify the technique and the moves for each
executed element in the program.

Single figure skaters are required to jump, spin, and do some footwork on the ice but
for dancing skaters only spin and footwork is required, they don't jump.

We're going to separate the required elements in jumps, spins, and footwork classes.
This way we would have three different classes with the elements that skaters can
perform for their competition programs.

First we need to define a Jump class with a few types of jumps. If later on we need to
add another jump we just define a new method in this class.

Ext.define("MyApp.skating.Jump",{

 waltz : function(){
 console.log("Waltz: a one-half rotation jump that forms the basis
for the axel jump.");
 },

 axel : function(){
 console.log("Axel: A single axel actually has 1.5 rotations");
 },

 split : function(){
 console.log("Split: With either a flip, lutz, or loop entry and
split or straddle position in the air.");
 }
});

Chapter 2

[43]

For the sake of simplicity we're just sending a log message to the console on each
method. But we can do anything else if needed.

Now let's define the Spin class which contains a few methods representing the types
of spins that a skater can do.

Ext.define("MyApp.skating.Spin",{

 scratch : function(){
 console.log("Scratch: With the free leg crossed in front of the
skating leg.");
 },

 crossfoot : function(){
 console.log("Crossfoot: Is a back upright spin in which the free
leg is crossed...");
 },

 camel : function(){
 console.log("Camel: Is a spin in which the free leg is held
backwards with the knee higher than the hip level");
 }
});

Our last class will represent the steps sequence that a skater can perform on the ice
for a competition.

Ext.define("MyApp.stepsequence.Footwork",{

 mohawk : function(){
 console.log("Mohawk: This sequence is usually done in the counter-
clockwise direction and on a circle or curve");
 },

 spreadeagle : function(){
 console.log("Spread eagle: The skater glides on both feet");
 },

 twizzles : function(){
 console.log("Twizzles: multirotational one-foot turns done in
figure skating.");
 }
});

The Core Concepts

[44]

So far we have represented the abilities for the skaters in three classes. We need to
add the specific abilities to each type of skater. Let's start with the figure skater who
will jump, spin, and do some footwork in his program.

Ext.define("MyApp.single.Skater",{
 extend : "Ext.util.Observable", //Step 1
 mixins : { //Step 2
 jump : "MyApp.skating.Jump",
 spin : "MyApp.skating.Spin",
 footwork: "MyApp.stepsequence.Footwork"
 },

 constructor : function(options){
 Ext.apply(this,options); //Step 3
 },

 compete : function(){ //Step 4
 var me = this;

 console.log(me.name+" from "+me.nationality+" starts the program!
Good luck!");
 me.waltz();
 me.mohawk();
 me.camel();
 me.axel();
 me.spreadeagle();
 me.scratch();
 console.log(me.name+" ends the program and gets the first
place!");
 }
});

• Step 1: We have extended from the Observable class, this will allow us to
implement events and listeners. We will explore more about events in future
chapters, for now we will use the class as an example.

• Step 2: We have defined an object with the mixins we want to apply to our
class. This will allow us to use all the methods and properties from those
classes in our Skater class. We're mixing all the classes to have one with all
the functionality from all of them.

• Step 3: We've created the constructor method. This receives a parameter
that should be an object to be applied to the instance at runtime. This will
allow us to configure our instance easily.

Chapter 2

[45]

• Step 4: We created the compete method. This method defines the skater's
program for the competition. Note that this method contains calls to the
methods defined in the mixed classes. We can call all the Jump, Spin, and
Footwork methods! We're also using the name and nationality properties,
which should be set at runtime when we create instances.

Let's create an instance of the single Skater class. In order to do that we need to
create an HTML file, import the Ext library, and all the classes we have created before.

var taky = Ext.create("MyApp.single.Skater",{
 name : "Taky",
 nationality : "Japan"
});
taky.compete();

We're setting the name and the nationality properties and then calling the compete
method, which internally executes all the needed calls. We should see something
such as the following screenshot:

We'll see the jumps, spins, and footwork that Taky did in his program.

Now we need to create the class for the ice dance skater. These skaters are not
required to jump but they perform more complicated footwork and spins. The
class for representing an ice dance skater should look like the following:

Ext.define("MyApp.dancing.Skater",{
 extend : "Ext.util.Observable",
 mixins : { //Step 1
 spin : "MyApp.skating.Spin",
 footwork: "MyApp.stepsequence.Footwork"
 },

The Core Concepts

[46]

 constructor : function(options){
 Ext.apply(this,options); //Step 2
 },

 compete : function(){ //Step 3
 var me = this;

 console.log(me.name+" from "+me.nationality+" starts the program!
Let's see how it goes...");
 me.camel();
 me.scratch();
 me.spreadeagle();
 me.twizzles();
 me.camel();
 console.log(me.name+" ends the program but with no good results
:(");
 }
});

• Step 1: We're mixing the classes for our ice dance skater, we only need
the Spin and Footwork classes in this case, but we can define as many
as we need.

• Step 2: We're creating the constructor method for our class. If you notice,
it's the same as the single Skater class.

Usually there's something wrong when we are repeating code. We
should create an abstract class that contains the constructor
method and then extend it for both of our types of skaters. This
way we won't repeat code and it will be easy to maintain.

• Step 3: We have created the compete method which only calls the methods
from the Spin and Footwork classes.

We can test our class by creating an instance in the main HTML file we already have.
Let's add the following code:

var susan = Ext.create("MyApp.dancing.Skater",{
 name : "Susan",
 nationality : "USA"
});
susan.compete();

Chapter 2

[47]

If we refresh our browser we should see something such as the following screenshot
in the JavaScript console:

The important thing about the mixins is that we can create classes to do specific tasks
and then mix those classes into one. This way we can reuse the same classes over and
over again.

In the Ext library classes such as Ext.util.Observable, Ext.util.Floating, Ext.
state.Stateful, and others are treated like mixins, each class knows how to do
specific things. This is something great for big applications and we should think
wisely how we're going to structure our big application before we start coding.

Let's suppose that in our previous example we would have one jump and spin with
the same name, what is going to happen when we mix them together? Which of
them is going to be added to the resulting class?

In order to answer these questions we need to know that the mixins pre-processor
do not override existing methods or properties in the resulting class. The configured
classes in the mixins object are iterated in the order we have defined them and its
methods and properties are applied to the resulting class.

In order to avoid collisions, the first class that applies the method wins and the
other class just ignores the repeating method. For example let's add a combination
method to the Jump and Spin classes.

Ext.define("MyApp.skating.Jump",{

 //...
 combination : function(){
 console.log("This is a combination jump!");
 }
});

The Core Concepts

[48]

Ext.define("MyApp.skating.Spin",{

 //...
 combination : function(){
 console.log("This is a combination spin!!");
 }
});

We have a method with the same name in the two classes; this means the skater can do
a combination jump and a combination spin. Same name but different functionality.

When we mix them into the Skater class we need to know which of the methods
will be applied to the resulting class. As mentioned before, the first class defined
wins, in this case the Jump class will set the combination method to the resulting
class and the combination method in the Spin class will be ignored.

Let's try our changes by calling the combination method with our Taky instance:

var taky = Ext.create("MyApp.single.Skater",{
 name : "Taky",
 nationality : "Japan"
});
taky.compete();
taky.combination();

We should see in the JavaScript console the following message:

This is a combination jump!

But what if we actually want to call the combination method from the Spin class?
How can we achieve that? When our instance is created Ext defines an object called
mixins, which contains an instance of each class we have defined. We can access
those instances by the key we've set when configuring our class in the mixins
pre-processor. In this case we defined the spin and jump keys, so we should access
the combination method in the Spin class as follows:

var taky = Ext.create("MyApp.single.Skater",{
 name : "Taky",
 nationality : "Japan"
});
taky.compete();
taky.combination();//Defined in Jump class

taky.mixins.spin.combination(); //Defined in Spin class
taky.mixins.jump.combination(); //Defined in Jump class

Chapter 2

[49]

We can access any method and property using the mixins object with the key
that we need. We can even access the mixins object within the class members,
for example, let's modify the compete method of the single Skater class.

Ext.define("MyApp.single.Skater",{

//...
compete : function(){
 var me = this;

 console.log(me.name+" from "+me.nationality+" starts the program!
Good luck!");
 me.waltz();
 me.mohawk();
 me.camel();
 me.axel();
 me.mixins.jump.combination();
 me.mixins.spin.combination();
 me.spreadeagle();
 me.scratch();
 console.log(me.name+" ends the program and gets the first
place!");
 }
});

This way we can avoid collisions and we can make sure we're always calling the
right method.

Configurations
Another great feature in this new version of Ext is the addition of configurations.
Usually when we create a class we set configurations so we can change the values
and behavior of our class depending on the input parameters. Ext 4 makes this
process really easy by adding a pre-processor to handle the configurations for us.

Ext.define("MyApp.data.Invoice",{
config : {
 client : '',
 tax : 0.083,
 subtotal : 0,
 total : 0
}
 constructor : function(config){
 var me = this;

 me.initConfig(config); //Step 2
 }
});

The Core Concepts

[50]

• Step 1: We have defined the pre-processor config, which allows us to
define an object with the properties we need. We can set a default value
for each configuration.

• Step 2: We have initialized the configurations by executing the initConfig
method and passing the configuration's parameter. This is a really important
step and it's required if we want to use the configuration feature. The
initConfig method is defined in the Base class. We need to keep in mind
that every class in Ext JS extend from the Ext.Base class.

Now we can create a test HTML file, importing the Ext library and our previous
class, then we create an Invoice instance as follows:

var invoice = Ext.create("MyApp.data.Invoice",{
 client : "Tuxtux Inc",
 subtotal : 100,
 total : 108.3
});

console.log(invoice.getClient());
console.log(invoice.getSubtotal());
console.log(invoice.getTax()); // 0.83
console.log(invoice.getTotal());

invoice.setTax(0.16);

console.log(invoice.getTax()); // 0.16

When using the config pre-processor, Ext automatically creates the getters and
setters for our configurations. We can use them to read or change the value of any
property defined in the config object.

Let's suppose we need to change the value of the subtotal property at runtime.
We should calculate the new total property based on the tax property. The Ext
generates an apply method for every property defined in the configuration. The
auto generated setter method calls internally the apply method before it sets the
new value to the property. If we need to add a custom logic, we need to override
the apply method as follows:

Ext.define("MyApp.data.Invoice",{

 //...
 applySubtotal : function(value){ //Step 1
 var me = this;
 me.setTotal(value + value * me.getTax());//Step 2
 return value; // Step 3
 }
});

Chapter 2

[51]

• Step 1: We override the applySubtotal method. We can add our custom
logic here; in this case we will calculate the new value for the total property.

• Step 2: We read the tax property in order to calculate the new
total property.

• Step 3: We returned the new value for the subtotal property. If we don't
return a value then nothing will be set for the property.

Now we can test our changes by modifying the HTML file by adding the following
lines of code:

invoice.setSubtotal(1000);

console.log(invoice.getTotal());

Everything should work now. We should see number 1160 in our JavaScript console,
which is the subtotal plus the tax.

Statics methods and properties
The statics methods belongs to the class and not to the instance, therefore we can
use statics methods without an instance.

Ext.define("MyApp.data.Client",{
 statics : { //Step 1
 sequence : 0,
 nextId : function(){
 return ++this.sequence;
 }
 },

 constructor : function(){
 this.id = this.self.nextId(); //Step 2

 console.log(this.id);
 }
});

• Step 1: We have defined the statics configuration, this will fire the statics
pre-processor when creating an instance. We have defined the sequence
property and the nextId method; these properties will be added to the
class as statics properties. We can define as many properties and methods
as we need.

• Step 2: We are using the self reference to access the class. The Ext defines
this reference in the statics pre-processor for each instance.

The Core Concepts

[52]

In order to test our class we need to create an HTML file, import the Ext library, the
class we have defined previously, and the following code to create instances:

Ext.create("MyApp.data.Client");
Ext.create("MyApp.data.Client");
Ext.create("MyApp.data.Client");

console.log(MyApp.data.Client.nextId()); //prints 4

We created three instances; by doing this we should see in the JavaScript console the
IDs for each instance. We can even execute the nextId method statically.

Singleton
By definition a singleton class can't be instantiated more than once. It should be the
same instance all the time. The Ext allow us to create singleton classes very easily
with one post-processor.

If we want a class to be singleton we only need to set the singleton property to true.
This will fire the correct post-processor:

Ext.define("MyApp.Constants",{
 singleton : true, //Step 1

 BASE_PATH : "/myapp", //Step 2
 ATTEMPTS : 5,
 TIMEOUT : 6000
});

• Step 1: We set the singleton property to true, this is all we need to do in
order to create a singleton class.

• Step 2: Define some properties for our singleton class, we can define as
many properties and methods as needed.

Let's create a test HTML file, import the Ext library and the previous class, then we
can access the properties from the class.

console.log(MyApp.Constants.BASE_PATH);
Ext.create("MyApp.Constants"); //Throws an error

We should see in our JavaScript console the value for the BASE_PATH property. We'll
see an error too, telling us that we can't create instances from a singleton class.

The singleton classes are commonly used for holding constants or configuration for
our application such as the base path of our application, the path where the images
are located, and things like that.

Chapter 2

[53]

Alias
An alias is a short name for a class. The class manager maps the alias name with the
actual class object. This feature is really useful when using the xtype property to
create widgets.

Ext.define("MyApp.abstract.Panel",{
 extend : "Ext.panel.Panel",
 alias : "widget.mypanel",

 title : "Abstract panel",
 html : "Main content"
});

In the previous code we're setting the alias property with a short name. We're also
using the widget prefix to indicate we're creating a component. A component is a
class such as the window, grid, or panel.

Let's create our class by the alias name. We have a few options to do that. We need
to create an HTML file, import the library and the previous class.

Ext.onReady(function(){

 Ext.create("widget.mypanel",{ //Option 1
 renderTo : Ext.getBody()
 });

//Option 2
 Ext.ClassManager.instantiateByAlias("widget.mypanel",{
 renderTo : Ext.getBody()
 });

//Option 3
 Ext.ClassManager.instantiate("widget.mypanel",{
 renderTo : Ext.getBody()
 });

 var win = Ext.create("Ext.window.Window",{
 title : "Window",
 width : 350,
 height : 250,
 items : [{
 xtype : "mypanel" //Option 4
 }]
 });
 win.show();

});

The Core Concepts

[54]

The explanation for the preceding code is as follows:

• Option 1: We can use the create method, which accepts the alias too. As
configuration we set the renderTo property to the body of the page.

• Option 2: We use the instantiateByAlias method, we define the renderTo
property again.

• Option 3: We use the instantiate method from the ClassManager class,
which actually is the same as using the Ext.create method. We have
discussed this in Chapter 1, The Basics.

• Option 4: Create an instance of the class by its alias using the xtype property
when the main window is created. We don't need to define the widget prefix.
The Ext identifies that we're trying to create a component so it assumes the
given xtype property should be prefixed by widget.

It's important to note we can use the xtype property only within the components
or widgets.

Loading classes on demand
When we develop large applications, performance is really important. We should
only load the scripts we need; this means that if we have many modules in our
application, we should separate them in packages so we would be able to load them
individually.

The Ext JS allows us to dynamically load classes and files when we need them, also
we can configure dependencies in each class and the Ext will load them for us.

We need to understand that using the loader is great for development, that way
we can easily debug the code because the loader includes all the classes one by
one. However, it's not recommended to load all the Ext classes in production
environments. We should create packages of classes and then load them when
needed, but not class by class.

In order to use the loader system we need to follow some conventions when defining
our class.

• Define only one class per file.
• The name of the class should match the name of the JavaScript file.
• The namespace of the class should match the folder structure. For example, if

we define a class MyApp.customers.controller.Main, we should have the
Main.js file in the MyApp/customers/controller path.

Chapter 2

[55]

Enabling the loader
The loader system is enabled or disabled depending on the Ext file that we import to
our HTML file. If we import the ext-all, ext-all-debug, or ext-all-dev file, the
loader is disabled because all the classes in the Ext library are loaded already. If we
import the ext, ext-debug, or ext-dev file, the loader is enabled because only the
core classes in the Ext library are loaded.

If we need to enable the loader, we should do the following:

Ext.Loader.setConfig({
 enabled : true
});

The previous code will allow us to load the classes when we need them. Also there's
a pre-processor that loads all the dependencies for the given class if they don't exist.

In order to start loading classes we need to set up the paths where the classes are,
we can do that in two different ways. We can use the setConfig method defining a
paths property as follows:

Ext.Loader.setConfig({
 enabled : true,
 paths : {
 MyApp : "loader"
 }
});

The paths property receives an object containing the root namespace of our
application and the folder where all the classes are located in this namespace.
We can add as many objects as needed.

Ext.Loader.setConfig({
 enabled : true,
 paths : {
 MyApp : "loader",
 Ext : "../extjs-4.1.1/src"
 }
});

In the previous code we have defined the Ext path, which is located in the src
folder. Every time the loader finds a namespace starting with MyApp or Ext it will
know where to look in order to load the missing class.

The Core Concepts

[56]

We can also use the setPath method to add a new path to the loader, for example:

Ext.Loader.setPath("MyApp.models","loader/models");

This way we can load classes in the MyApp.models namespace at runtime, this
method is useful for adding paths dynamically at any time.

Once we have enabled and configured the loader correctly we can start loading our
classes using the require method.

Ext.require("MyApp.models.Movie");

Ext.onReady(function(){
 var movie = Ext.create("MyApp.models.Movie",{
 title : "Zoombies attack!",
 director: "Johnny Doe"
 });

 console.log(movie.get("title"));
});

The require method creates a script tag behind the scenes. After all the required
files are loaded the onReady event is fired. Inside the callback we can use all the
loaded classes.

If we try to load the classes after the require call, we'll get an error because the
class won't exist until it's downloaded and created. This is why we need to set the
onReady callback and wait until everything is ready to be used.

We can also set a callback directly in the require call. We can pass a second
parameter with a function to be executed after the class is imported correctly.

Ext.require("MyApp.music.Song",function(){

 var song = Ext.create("MyApp.music.Song",{
 title : "The next thing",
 autor : "John Doe",
 duration : 3.55
 });

 console.log(song.get("title"));

});

Chapter 2

[57]

Dependencies
Once we have the loader system up and running we can take advantage of a
pre-processor to load automatically the class dependencies. This is really useful
when we create a class. We can define which classes are needed in order to
instantiate our classes.

Ext.define("MyApp.models.Book",{
 extend : "Ext.data.Model",

 fields : ["id","title","author","description","pages"]
});

First we create a class that represents a book; the class extends from a models class
and contains a few fields that describe a book. Now let's create another class that
depends on the book.

Ext.define("MyApp.library.bookshelf.Bookshelf",{
 requires : ["Ext.util.MixedCollection"],//Step 1
 uses : ["MyApp.models.Book"], //Step 2

 constructor : function(){
 this.books = Ext.create("Ext.util.MixedCollection");
 },

 getBook : function(index){
 return this.books.get(index);
 },

 addBook : function(data){
 var book = Ext.create("MyApp.models.Book",data);
 this.books.add(book);
 }
});

• Step 1: The Bookshelf class depends on the MixedCollection class in order
to work properly. In the first step we're using the requires property to
define a list of classes that are needed to be imported to the document. We
can define as many classes as needed. The pre-processor's loader will see if
the class is already imported, if it is not then the loader will import it.

• Step 2: We're defining the uses property. This is a list of classes that needs to
be imported too.

The Core Concepts

[58]

The difference between requires and uses is that requires is a pre-processor and
uses is a post-processor.

If our class needs other classes in order to be constructed, we need to use the
requires property. The Ext will import all the classes before our class is created.
In the previous example we required MixedCollection because we created an
instance of that class in our constructor.

On the other hand if our class needs other classes that may or may not be used, we
can import them after the class is created. In the previous example we don't know for
sure if the Book class is going to be used or not, it depends if the method addBook is
called at some point.

As a rule of thumb we need to identify which classes are used to
create or construct our component and those classes that may or
may not be used later depending on the user's interaction.

Once we have settled up the dependencies we can test our example. Let's create an
HTML file, but this time we're going to include the ext-dev.js file. If you remember
from Chapter 1, The Basics, this file contains only the core classes and not the whole
Ext library, we're going to load only the needed Ext classes.

Ext.Loader.setConfig({
 //enabled : true,
 paths : {
 MyApp : "loader",
 Ext : "../extjs-4.1.1/src"
 }
});

If we use the ext.js, ext-debug.js, or ext-dev.js files, it's not necessary to enable
the loader because by default it is enabled. We only need to set the right paths for
our application classes and for the Ext classes.

Then we need to require only the Bookshelf class, the loader will detect that this
class contains dependencies and will try to include them.

Ext.require("MyApp.library.bookshelf.Bookshelf");

After we require the class we need to wait until all the dependencies are ready.
We can achieve this by using the onReady method.

Ext.onReady(function(){

 var bookshelf = Ext.create("MyApp.library.bookshelf.Bookshelf");

 bookshelf.addBook({

Chapter 2

[59]

 id : 1,
 title: "Steve Jobs",
 author: "Walter Isaacson",
 pages : 562
 });

 console.log(bookshelf.books.getCount()); // 1

});

We are creating the Bookshelf class as usual and then we add a book to the
bookshelf and get the count of the books in the instance. We should see the number
one in the JavaScript console, because we have only added one book to the collection.

If we look at the network traffic tab in the development tools in Chrome, we should
see all the files included when we required only the Bookshelf class. Internally the
Ext figured out which classes it needs to import in order to run our example:

As we can see there are 38 files included, this is because we're using the models
class. It's important to mention that we didn't define a require property in our Book
model we just defined the extend property. The Ext also checks if the superclass
exists. If it doesn't, it tries to import it. The same applies to the mixins.

The Core Concepts

[60]

Synchronous Loading
We use the Ext.create method to create an instance of a specific class; if the given
class doesn't exist, the loader tries to load synchronously using an Ajax call. Let's
modify our latest example by removing the require line.

//Ext.require("MyApp.library.bookshelf.Bookshelf");

If we reload our browser, we should see an error, telling us that the Bookshelf class
could not be loaded. This is because an Ajax call is made so we need to use a web
server in order to make this work:

Since we're using the ext-dev.js file, we're getting a warning and a very descriptive
error. If we are using any other version of the ext file, we will get a generic error that
will be harder to understand.

We should always use the ext-all-dev or ext-dev files when
importing the Ext library in our development environment. This
way we'll get meaningful warnings and errors. For production
environments we should use the compressed versions.

Chapter 2

[61]

Let's use a web server such as Apache (http://httpd.apache.org/) to run our
previous example. We can use whatever web server we feel comfortable with or have
previous experience of. We only need to copy our example with all our dependencies
to the public folder in our web server. Let's open the browser and navigate to the
URL where our example is present:

If we notice, the example takes a lot more time to run our code than before. This
is because the 38 classes are getting imported using Ajax calls, one after another,
this makes the loading process really slow. This is why we should use the require
method instead.

Working with the DOM
The Ext JS provides an easy way to deal with the DOM. We can create nodes,
change styles, add listeners, and create beautiful animations, among other things
without worrying about the browsers implementations. The Ext JS provides us with
a cross-browser compatibility API that will make our lives easy.

The responsible class for dealing with the DOM nodes is the Ext.Element class.
This class is a wrapper for the native nodes and provides us with many methods
and utilities to manipulate the nodes.

The Core Concepts

[62]

Getting elements
We can use the get method from the Ext.Element class to get a node by its ID and
then manipulate the node using the Element wrapper.

<!DOCTYPE html>
<html>
<head>
<title>The DOM</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1/ext-all-dev.js"></
script>

 <script type="text/javascript">

 Ext.onReady(function(){

 var div = Ext.Element.get("main");

 });

 </script>

</head>
<body>
 <div id="main"></div>
</body>
</html>

We can also use the Ext.get alias to do the same. In the div variable we have an
instance of the Ext.Element class containing a reference to the node that has main
as its ID.

We may use the setStyle method in order to assign some CSS rules to the node.
Let's add the following code to our example:

div.setStyle({
 width : "100px",
 height : "100px",
 border : "2px solid #444",
 margin : "80px auto",
 backgroundColor : "#ccc"
});

Chapter 2

[63]

We're passing an object with all the rules that we want to apply to the node. As a
result we should see a gray square in the center of our screen:

If we want to add a CSS class to the node we can use the addCls method. We can
also use the removeCls if we want to remove a CSS class from the node.

div.addCls("x-testing x-box-component");

div.removeCls("x-testing");

There are a lot of methods we can use to manipulate the node element. Let's try some
animations with our element.

div.fadeOut()
.fadeIn({
duration:3000
});

The fadeOut method slowly hides the element by changing the opacity
progressively. When the opacity is zero percent the fadeIn method is executed by
changing the opacity by 100 percent in three seconds.

We should take a look at the documentation (http://docs.sencha.com/) in order
to know all the options we have available, there we can find examples of code to
play with.

Query – How to find them?
The Ext JS allows us to query the DOM to search for specific nodes. The query engine
supports most of the CSS3 selectors specification and the basic XPath.

The responsible class that does the job is the Ext.DomQuery class; this class contains a
few methods to perform a search.

The Core Concepts

[64]

The following code is an HTML document which contains a few tags so we can
search for them using the DomQuery class:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>The DomQuery</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1/ext-all-dev.js"></
script>

 <script type="text/javascript">

 Ext.onReady(function(){

 //code here...

 });

 </script>

</head>
<body>
 <div id="main">
 <div class="menu">

 Home
 About us

 </div>
 <div class="content">
 <h1>Welcome to Ext JS 4!</h1>
 <p>This is an example for the DomQuery class.</p>
 </div>
 </div>
</body>
</html>

In order to perform the search we'll use the select method from the DomQuery class;
we'll pass a CSS selector as the only parameter.

//Step 1
varlis = Ext.DomQuery.select("#main .menu ulli");

lis = Ext.get(lis); //Step 2

lis.setStyle({ //Step 3
 display : "inline",

Chapter 2

[65]

 backgroundColor : "#003366",
 margin : "3px",
 color : "#FFCC00",
 padding : "3px 20px",
 borderRadius : "10px",
 boxShadow : "inset 0 1px 15px #6699CC"
});

• Step 1: We define our selector. This is a simple CSS rule, but we can create
more advanced selectors. We should have a look at the documentation so we
can know all the selectors, attribute filters, and pseudos that we can use to
construct our selectors.

• Step 2: The select method returns an array of nodes that match our
selector. In this step we use the Ext.get method and pass the array
of nodes as a parameter. This will allow us to wrap the nodes into an
Ext.CompositeElementLite collection; this way we can modify all the
nodes at once using the Ext.Element APIs.

• Step 3: In the last step we set some styles to the list of elements. We define
colors, margins, and borders, but we could do anything we want, even an
animation or whatever we need:

The previous screenshot shows the nodes that have been modified. Those nodes are
a list of elements with the styles that we have applied to them.

The Core Concepts

[66]

If we would like to change the color of the title, we should use the selector and apply
the styles that we need.

var h1 = Ext.select("#main div[class=content] h1");

h1.setStyle("color","#003399");

In the previous code we have created a selector to match the title of the page.
One interesting thing about the code is the use of the Ext.select method.
This method uses the Ext.DomQuery class internally and also returns an
Ext.CompositeElementLite collection so we can modify all the nodes at once:

Manipulation – How to change it?
We can create and remove nodes from the DOM very easily. The Ext contains a
DomHelper object, which provides an abstraction layer and give us an API to create
DOM nodes or HTML fragments.

Chapter 2

[67]

Let's create an HTML file, import the Ext library, and then use the DomHelper object
to append a div element to the document's body.

Ext.onReady(function(){

 Ext.DomHelper.append(Ext.getBody(),{
 tag : "div",
 style : {
 width : "100px",
 height : "100px",
 border : "2px solid #333",
 margin : "20px auto"
 }
 });

});

We used the append method; the first parameter is where we want to append the
new element. In this case we're going to append it to the document's body.

The second parameter is the element that we want to append; the tag property
defines the type of element that we want to create. In this case we define a div
element, but we can define any of the available tags in the HTML specification:

The Core Concepts

[68]

We can define styles, classes, children, and any other property that an HTML
element supports. Let's add some children to our previous example.

Ext.DomHelper.append(Ext.getBody(),{
 //...
children : [{
 tag : "ul",
 children : [{
 tag : "li",
 html : "Item 1"
 },{
 tag : "li",
 html : "Item 2"
 }]
 }]
});

We have added an unordered list to the main div. The list contains two children that
are list elements. We can have as many children as needed:

There's another method that we can use if we want to create a node, but we want to
insert it into the DOM later.

var h1 = Ext.DomHelper.createDom({
 tag : "h1",
 html : "This is the title!"
});

Ext.getBody().appendChild(h1);

Chapter 2

[69]

When we use the createDom method we create a new node in the memory. We
probably append this node to the DOM later on, or maybe not. In this example we
have appended it to the document's body:

We know how to create and append nodes to the DOM, but what if we want to
remove elements from the DOM? In order to remove the element from the DOM
we need to use the remove method from the Ext.Element class.

 Ext.fly(h1).remove();

The previous code is calling the Ext.fly method. This method is similar to the
Ext.get method; it returns an instance to the Ext.Element class containing a
reference to the node element. Once we have the node in the wrapper we can
call the remove method and the node will be removed from the DOM.

The Core Concepts

[70]

Summary
When using Ext JS we need to change our mind and see everything as an object or
class. We need to think carefully how we're going to model our objects and data.
We have learned how to work with object-oriented programming with the new
class system.

We also learned about the new loader system to import our classes dynamically,
managing dependencies for us, and only loading what we need. At the end of
this chapter we learned about the DOM and how to perform a search in order to
manipulate the nodes easily.

In the next chapter we'll learn about the layout system, a powerful way to create and
manage our layouts. There are several types of layouts that we can use and combine
to create unique interfaces.

Components and Layouts
One of the greatest features in Ext JS is the ability to create complex layouts to
arrange our components in different ways using a container. Since the early versions
of the library, Ext has had a great layout system. In the latest version, new layouts
have been added and some others have been redesigned.

In this chapter, we're going to learn about containers, how the components work,
and how we can create nested layouts to achieve complex designs.

We're going to cover the following topics in this chapter:

• Components
• Containers
• The Layout system
• Available layouts

The components lifecycle
Before we move into the layout systems and widgets, we should know a few
concepts about how components work.

Every widget in the Ext framework extends from the Ext.Component class. This class
extends from the Ext.AbstractComponent class, which provides shared methods for
components across the Sencha products.

When we create a component such as windows, grids, trees, and any other, there's a
process called The component lifecycle that we should understand.

It is important for us to know the things that occur during each of the phases in
the lifecycle process. This will help us to create custom components or extend the
existing ones.

Components and Layouts

[72]

Basically, there are three phases in the component's lifecycle: the creation process, the
rendering process, and the destruction process.

The creation phase initializes our new instance and it gets registered on the
component manager, the rendering phase will create all the needed nodes on the
DOM, and the destruction phase will be executed when the component is destroyed,
removing listeners and nodes from the DOM:

The Ext.AbstractComponent and Ext.Component classes directs the lifecycle
process. Every class that extends from the Component class will participate in the
lifecycle automatically. All the visual widgets extend from these two classes and if
we're planning to create our own custom components, we should extend from those
classes too.

In order to have a better understanding of all three phases, let's create a panel
component and see what's going on in each phase step by step.

var panel = Ext.create("Ext.panel.Panel",{
 title : "First panel",
 width : 400,
 height : 250,
 renderTo : Ext.getBody()
});

The creation phase
The main purpose of this phase is to create the instance of the component according
to the configurations that we defined. It also registers our new component on the
component manager and a few other things. The following screenshot shows all the
steps in this phase:

Chapter 3

[73]

1. The first step is to apply the configuration properties to the generated
instance of the class that we are creating. In the previous code, the title,
width, height, and renderTo properties will be copied to the instance of the
panel, as well as any other property that we decide to define.

2. The second step is to define common events such as enable, disable, or show.
These are common events for every component.

3. The next step is to assign an ID to the instance. If we define an ID in the
configuration object, then the instance will use that ID. In our example, we
didn't specify an ID. In this case, an auto generated ID is assigned.

Assigning IDs to our components is considered a bad practice.
We should avoid doing that because they should be unique.
If we work in a big project with other developers, there's a big
chance that we will repeat IDs. Duplicating IDs will drive us to
unexpected behaviors, because the component's ID is used in
the DOM elements when rendering the component.

4. In the fourth step, the creation process verifies if we have defined plugins
in our configuration and tries to create all the needed instances for those
plugins. A plugin is an additional functionality for our instances. In our
previous example, we didn't define any plugin, so this step is skipped.

Components and Layouts

[74]

5. In the fifth step, the initComponent function is executed. We should
override this method in our subclasses if we want to execute code when
the instance is being created.

There are many more methods that are defined by the
Component class. These template methods are intended
to be overridden in the subclasses to add specific
functionality in different phases of the lifecycle.

6. In this step, the new instance is added to the Ext.ComponentManager
object. This means that every component that we create will be stored in
the component manager allowing us to get any reference by using the Ext.
getCmp method and passing the ID as a parameter.
//getting a component by it's ID
var panel = Ext.getCmp("panel-1234");

console.log(panel);

The getCmp method is great for debugging applications. We can
get the ID of any component by looking at the DOM elements.
Then, we can get the instance and inspect the state of our object,
but we shouldn't use this method in our code.

7. The Component class contains two mixins, one for the event management
and the other for the state of our components. In this step, the two mixins
are initialized by calling their constructor.

8. If we have defined plugins, they should be already instantiated in the
previous step and now they have to be initialized by calling the init method
of each plugin and passing our component instance as a parameter. We will
learn how plugins work and how to create one from scratch later in this book.

If the renderTo property has been defined in the configurations, the rendering phase
starts in this step, which means that all the needed nodes that visually represent our
component will be inserted into the DOM. If we don't define this property, nothing
happens and we are responsible to render our instance whenever we need.

var panel = Ext.create("Ext.panel.Panel",{
 title : "First panel",
 width : 400,
 height : 250
});

panel.render(Ext.getBody());

Chapter 3

[75]

If we want to render our component later on, we can call the render method of
our instance and pass the place where we want to add our new component as a
parameter. In the previous code, we are rendering our panel on the body of our
document, but we can also set the ID of the node where we want to place our
component, for example:

panel.render("some-div-id");

The rendering phase
The rendering phase only occurs if the component is not rendered already. In this
phase, all the required nodes will be inserted to the DOM, the styles and listeners
will be applied, and we will be able to see and interact with our new component.
The following diagram shows the steps that are executed during this phase:

1. In the first step, the beforerender event is fired. If some of the listeners
return false, then the rendering phase is stopped.

Components and Layouts

[76]

2. In the second step, the process checks if the component that is being rendered
is a floating component, such as a menu or a window, to assign the correct
z-index property. The z-index is a CSS property that specifies the stack
order of an element. The greater number assigned will be always in front of
the other elements.

3. The third step is to initialize the container by creating the container
property which refers to the DOM element, where the new component will
be rendered. The container property is an Ext.Element instance.

4. In the fourth step, the onRender method is executed. The el property is
created which contains the main node element of the component. We can
define a template for our components; if we do that then the template will
be created and appended to the main node in this step. We can override the
onRender method in our subclasses to append specific nodes to the DOM.

5. The next step is to set the visibility mode. There are three modes for hiding
the component's element (display, visibility, or offset).

6. If the overCls property is set, then a listener for the mouse over and mouse
out is set to add or remove the css class for each state. We can set some CSS
rules to these classes to modify the look of our components.

7. In the sixth step, the render event is fired. The component's instance is
passed as a parameter to the listeners.

8. The seventh step is to initialize the content. There are three ways to set the
content of the component:

i. We can define an html property with tags and nodes that will be
added to the content of our new component.

ii. We can define the contentEl property that should be the ID
of an existing DOM element. This element will be placed as the
component content.

iii. We can define a tpl property with a template to be appended
to the content. Also, we should define a data property with an
object containing the replacements in our template. We will talk
about templates in future chapters.

9. The following code shows the three ways to add HTML content to a
component. We should use only one way at a time.
//Using the html property
Ext.create("Ext.Component",{
 width : 300,
 height : 150,
 renderTo : Ext.getBody(),
 html : "<h1>Hello!</h1><p>This is an example
of content</p>"

Chapter 3

[77]

});

//Using an existing DOM element with an ID content
Ext.create("Ext.Component",{
 width : 300,
 height : 150,
 renderTo : Ext.getBody(),
 contentEl: "content"
});

//Using a template with data
Ext.create("Ext.Component",{
 width : 300,
 height : 150,
 renderTo : Ext.getBody(),
 data : {name:"John"},
 tpl : ["<h1>Content</h1><p>Hello {name}!</p>"]
});

10. Returning to the render phase, the next step is to execute the afterRender
method. If the component contains children, these are rendered in this step
too. We're going to talk about containers shortly.

11. In the ninth step, the afterRender event is fired. We can listen to this event
in our subclasses to perform some actions when all the needed nodes are
rendered in the DOM.

12. In the tenth step, all the listeners that depend on the new nodes are
initialized.

13. The eleventh step is to hide the main component node if the hidden property
is set to true in our configurations parameter.

14. Finally, if the disabled property is set to true, then the component executes
the disable method, which adds some CSS classes to the main node to make
the components appearance disabled and mark the disabled flag as true.

The following code shows an example of how the rendering phase works. We are
starting the whole process by calling the render method:

varcmp = Ext.create("Ext.Component",{
 width : 300,
 height : 150,
 data : {name:"John"},
 tpl : ["<h1>Content</h1><p>Hello {name}!</p>"]
});

//The rendering phase starts for this component
cmp.render(Ext.getBody());

Components and Layouts

[78]

By knowing the steps that are executed inside of the render phase, we will be able to
overwrite the methods such as the onRender, render, or afterRender in our own
classes. This is very useful when creating new components or widgets.

The destruction phase
The main idea of this phase is to clean the DOM, remove the listeners, and clear the
used memory by deleting objects and arrays. It's very important to destroy all our
components when we don't want them anymore. The destroy phase will be executed
when the user finishes the task with our component, for example, if we create a
window the destroy phase will be invoked when the user closes the window.

The following diagram shows the steps that are executed in this phase:

1. The destruction phase starts by firing the beforedestroy event. If any
listener returns false, then the destruction is stopped.

2. The second step executes the beforeDestroy method. Some subclasses use
this method to remove their children or to clear memory.

3. In the third step, if the component that is being destroyed is a child of
another component, then the parent reference to this component is removed.

Chapter 3

[79]

4. In the fourth step, the onDestroy method is executed. We should override
this method in order to destroy our component properly.

5. The fifth step tries to destroy all the plugins if there are any.
6. If the component is rendered, then in the sixth step, all nodes from the DOM

are removed.
7. In the next step, the destroy event is fired. We can listen for this event and

perform some actions if needed.
8. The last step is to unregister the instance of the component from the

component manager and clear all the events.

One important thing to keep in mind is that we should always remove and clear
the memory that we're using in our components, as well as the nodes in the DOM
that we have added before. We should override the appropriate methods in order to
destroy our components correctly.

If we want to eliminate a component, we can execute the destroy method of the
component. This method will trigger the destroy phase and all the previous steps
will be executed.

//The destroy phase starts for this component
cmp.destroy();

The lifecycle in action
Now that we know the process of the creation of a component, we can create our
own component, taking advantage of the lifecycle to customize our component. The
following example shows the methods that we can override to add the functionality
that we need in any of the available steps of the lifecycle:

Ext.define('MyApp.test.LifecycleExample',{
extend : 'Ext.Component',

initComponent : function(){
var me = this;

me.width = 200;
me.height = 100;
me.html = {
tag : 'div',
html : 'X',
style : {
 'float' : 'right',
 'padding' : '10px',
 'background-color': '#e00',
 'color' : '#fff',

Components and Layouts

[80]

 'font-weight' : 'bold'
 }
 };

me.myOwnProperty = [1,2,3,4];

me.callParent();

console.log('1. initComponent');
 },

beforeRender : function(){
console.log('2. beforeRender');

this.callParent(arguments);
 },

onRender : function(){
console.log('3. onRender');

this.callParent(arguments);

this.el.setStyle('background-color','#ccc');
 },

afterRender : function(){
console.log('4. afterRender');

this.el.down('div').on('click',this.myCallback,this);

this.callParent(arguments);
 },

beforeDestroy : function(){
console.log('5. beforeDestroy');

this.callParent(arguments);
 },

onDestroy : function(){
console.log('6. onDestroy');

delete this.myOwnProperty;
this.el.down('div').un('click',this.myCallback);

this.callParent(arguments);
 },

myCallback : function(){
var me = this;

Chapter 3

[81]

Ext.Msg.confirm('Confirmation','Are you sure you want to close this
panel?',function(btn){
if(btn === 'yes'){
me.destroy();
 }
 });
 }
});

The previous class overrides the template methods. This term is used for the
methods that are automatically executed during the lifecycle. From the previous
code, we can see how to add content using the html property, how to add listeners
to the elements that we create, and more importantly how to destroy and clear our
events and custom objects.

In order to test our class, we need to create a .html file, include the Ext JS library,
and our class, then we need to create the instance of our class as follows:

Ext.onReady(function(){
 Ext.create('MyApp.test.LifecycleExample',{
 renderTo : Ext.getBody()
 });
});

As a result, we will see something like the following screenshot in our browser:

Components and Layouts

[82]

As we can see, there are four messages in the JavaScript console. These messages were
sent by each of the methods that we have overridden. We can also see the order of the
execution based on the lifecycle. Now, if we want to destroy this component, we need
to click the red button at the top-right. This action will call the destroy method that is
responsible for clearing the nodes from the DOM, events, and objects from memory.

About containers
At this point, we know all the steps of the lifecycle. If you remember in the rendering
phase there's a step where the children of the components are rendered too. Now
we're going to learn how we can add children to a component.

The Ext.container.Container class is responsible to manage children and to arrange
those using layouts. If we want our class to contain other components, we should
extend from this class. It's worth saying that this class extends from Ext.Component,
so we'll be able to use the component lifecycle in our subclasses too:

All classes that extend from Ext.Container will be able to have children using the
items property or the add method to append a new component as a child.

Ext.define("MyApp.container.MyContainer",{
 extend : "Ext.container.Container", //Step 1

 border : true,
 padding : 10,

 initComponent : function(){
 var me = this;

 Ext.each(me.items,function(item){ //Step 2
 item.style = {
 backgroundColor:"#f4f4f4",
 border:"1px solid #333"

Chapter 3

[83]

 };
 item.padding = 10;
 item.height = 100;
 });

 me.callParent();
 },

 onRender : function(){
 var me = this;

 me.callParent(arguments);

 if(me.border){ //Step 3
 me.el.setStyle("border","1px solid #333");
 }
 }
});

1. The previous class extends from the Ext.container.Container class. Now
we can use the layout system to arrange the children of the container.

2. When extending from the Container class, we can use the items property to
define the children of the main container. We're looping the items property,
which is an array, to add some basic styles. We're using the initComponent
method that is executed automatically in the creation phase. We shouldn't
forget to call the super class by executing the callParent method.

3. The last step overrides the onRender method. After executing the
callParent method, we can have access to the el property that is a reference
of the main node of our component. If the border property is set to true, we
will add CSS styles to display a border around the main element's node.

4. Once we have defined our class, we can create an instance of it. Let's create
an HTML page including the Ext library and our class in order to execute the
following code:

Ext.onReady(function(){

 Ext.create("MyApp.container.MyContainer",{
 renderTo: Ext.getBody(),
 items : [{
 xtype : "component",
 html : "Component one"
 },{
 xtype : "component",
 html : "Component two"
 }]
 });

});

Components and Layouts

[84]

We're creating the instance of our class as usual. We added the items property as an
array of components. We can define as many components as we need because our
class is a container.

In this example, we are using the xtype property to define each inner component,
but we could also create an instance of the component's child and then pass the
reference into the items array.

Using the xtype property allows us to create components
with a few lines of code. When the main container is created,
all their children are created as well. We'll find all the
available xtype properties in the documentation under the
Ext.Component class.

The previous screenshot shows three components. One is the main component that
contains two children. We have achieved this by extending from the Container class
and using the items property.

Chapter 3

[85]

When using containers, we can define a property called defaults that allows us to
apply the same properties to all of the children in the main container. Let's add some
default values to our previous example:

Ext.create("MyApp.container.MyContainer",{
 renderTo: Ext.getBody(),
 defaults: {
 xtype : "component",
 width : 100
 },
 items : [{
 //xtype : "component",
 html : "Component one"
 },{
 //xtype : "component",
 html : "Component two"
 }]
});

The defaults property receives an object containing all the configurations that we
want to apply to the components inside the items array. In this case, we have added
the width and xtype properties. This way we don't have to repeat the same lines of
code for each component:

Components and Layouts

[86]

As we can see in the previous screenshot the size of the two children are the same.
We can also override a default property by simply adding the property that we want
to be different to the specific child.

Every time we find properties that are repeated in each child
component. We should use the defaults property to apply all
these properties at once. This will reduce the lines of code and
will prevent code duplication. If we define the same property in
any of the children, the default value will be overridden.

The panel
A panel is a container that can be placed as a block in a given space. A panel
can contain other panels or even other components because it extends from the
container class.

A panel contains a few regions where we can add content. Let's create our first panel,
by instantiating the Ext.panel.Panel class. We need to create an HTML page,
import the Ext library, and then execute the following code when the DOM is ready
to be used:

Ext.onReady(function(){

 var panel = Ext.create("Ext.panel.Panel",{
 renderTo: Ext.getBody(),
 title : "My first panel",
 width : 300,
 height : 200,
 html : "The content"
 });

 panel.center();

});

Chapter 3

[87]

We have created the instance of the Panel class in the same way we created a
component in previous examples. The only difference is that we have added a new
configuration called title with the text we want to show as the title of our panel.

The previous screenshot shows the header area on top of the panel. We can move
the header to the bottom, left-hand, or right-hand side of the panel by using the
headerPosition configuration and setting the side we want.

We can also see the content area. In this example, we use the html property, but we
could also use the items array to set other components as children.

Another area where we can add content is the tools region. We can define small
buttons in the top-right of the title bar by using the tools configuration.

Ext.onReady(function(){

 var panel = Ext.create("Ext.panel.Panel",{
 renderTo: Ext.getBody(),
 title : "My first panel",
 width : 300,
 height : 200,
 html : "The content",
 tools : [
 {type : "help"},
 {type : "search"},
 {type : "gear"},
 {type : "print"}
]

Components and Layouts

[88]

 });

 panel.center();

});

We have a set of 25 icons available that can be specified by using the type property
for each button. We can consult the documentation in order to see all available icons
under the Ext.panel.Tool class.

If we want our panel to be collapsible or closable, we can set the collapsible and
closable configuration to true. This will add two buttons in the tools region.

The last region, where we can place components, is the docked items region. We can
place components in the top, bottom, left-hand, or right-hand side of the content
area. The typical component that we place in these regions is a toolbar with buttons,
but we can place any other if we want.

var panel = Ext.create("Ext.panel.Panel",{
 //...
 dockedItems : [{
 xtype : "toolbar",
 dock : "top",
 items : ["Top toolbar!"]

Chapter 3

[89]

 },{
 xtype : "toolbar",
 dock : "bottom",
 items : ["Bottom toolbar!"]
 },{
 xtype : "toolbar",
 dock : "left",
 items : ["Left
 toolbar!"]
 },{
 xtype : "toolbar",
 dock : "right",
 items : ["Right
 toolbar!"]
 }]
});

We can define an array of components to be placed in different positions. In this
case, we're placing toolbars in four different places using the dock property. We
can add two or more components in the same position and they will be placed one
over each other.

We can also use a short way to add our toolbars. For example, if we want to add a
toolbar to the top of the container, we can use the tbar property that receives an
array of buttons or other components that will conform the toolbar.

Components and Layouts

[90]

There's also the bbar property to place a toolbar on the bottom, the lbar property to
place a toolbar on the left-hand side, the rbar property to place it on the right-hand
side, and the fbar property to place it in the footer of the container.

We use panels to create blocks of content and to define our layouts. We can create
nested panels and arrange the children with one of the available layouts.

The Window component
A window is basically a floating panel with more features. The Window component
extends from the Panel class. This means we can use all the methods and properties
that the panel has.

We can drag a window from the header bar, close it, and maximize it among other
things. Let's create a .html file importing the Ext library and running the following
code when the DOM is ready.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 defaults: {
 xtype : "panel",
 height : 60,
 collapsible : true
 },
 items : [{
 title : "Menu",
 html : "The main menu"
 },{
 title : "Content",
 html : "The main content!"
 }]
});

win.show();

The only difference in our previous code and the panel's code is the maximizable
property that allows us to maximize the window. We've removed the renderTo
property too and used the show method to render and display the window.

Chapter 3

[91]

The previous screenshot shows a window with two panels inside. By default,
the window is closable, but we can make it unclosable by setting the closable
property to false.

We can move the window across the screen by dragging the header. We can also
resize the window with the mouse for each of the four sides.

There are many more options for the window component. We should take a look at
the API documentation and play around with this component. Go to the following
link: http://docs.sencha.com/ext-js/4-1/#!/api/Ext.window.Window.

The layout system
One of the greatest features of the Ext JS library is the ability to create layouts in an
easy way. We can define fixed layouts or fluid layouts using the right classes.

At this point, we know how a container works. We can arrange the children of a
container by setting a layout. If we don't define a layout to our containers, by default
the auto layout will be used. In our previous examples, we've used the auto layout
and as we could see the children are displayed one after another.

Components and Layouts

[92]

There are many available layouts we can use to arrange our components, such as
accordions, cards, columns, regions, and so on.

We can find all available layouts in the Ext.layout.container package. If we go to
the documentation and look into the layouts package, we will see many classes, each
representing a type of layout.

Fit layout
This layout is intended to be used for only one child. It allows us to expand the inner
component to the size of the container. The child component takes all the available
space in the container component. When the parent is resized, the child size is
updated too to fit the new dimensions.

Let's modify our previous window example and add a fit layout to the
main container.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 layout : "fit",
 defaults: {
 xtype : "panel",
 height : 60,
 border : false
 },
 items : [{
 title : "Menu",
 html : "The main menu"
 },{
 title : "Content",
 html : "The main content!"
 }]
});

win.show();

In the previous code, we have only added the layout property. In this case, we're
setting a string with the name of the layout, but we can also set an object and define
some configurations for the selected layout. In fact, every layout is a class that
accepts configurations. We'll see an example of this shortly.

Chapter 3

[93]

The following screenshot shows how the fit layout arranges the children of the
container component:

Even if we define two children components to the window, it only appears as one.
If we resize the main window, we should see that the Menu panel is expanded to fit
the new size of the window.

Card layout
If we need to create a wizard or display only one component at a time, we should use
the card layout. It extends from the fit layout which means only one component
will be shown and expanded to fill all the available space in the container.

The difference with the card layout is that we can move the components easily by
calling the next or prev method. We can also set the displayed component by its
index in the items array.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 layout : "card", //Step 1

Components and Layouts

[94]

 defaults: {
 xtype : "panel",
 height : 60,
 border : false
 },
 items : [{
 title : "Menu",
 html : "The main menu"
 },{
 title : "Content",
 html : "The main content!"
 }]
});

win.show();

setTimeout(function(){
 win.getLayout().setActiveItem(1); //Step 2
},2000);

The previous code creates a window component with two panels. We have set the
layout of the window to card in step one.

In step two, we get the layout instance by calling the getLayout method after 2
seconds. Now, we can display any of the components we have in the items array.
In this example, we have executed the setActiveItem method, passing the index of
the component to be shown. We can also use the prev and next methods from the
layout instance to show the next and previous card.

Chapter 3

[95]

The previous image shows how the card layout works, first we displayed the Menu
panel and after 2 seconds, the Content panel is displayed.

HBox layout
When using this layout, we can arrange our inner components horizontally. We can
assign a flexible width for each component and even align the components to the top,
center, or stretch them to fit the container's height.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 layout : {
 type : "hbox",
 align : "top" //middle, top, stretch, stretchmax
 },
 defaults: {
 xtype : "panel",
 height : 60
 },
 items : [{
 title: "Menu",
 html : "The main menu"
 },{
 title: "Content",
 html : "The main content!"
 }]
});

In our previous code, we have defined an object to the layout property. The
object contains a type property that receives the layout we want to use, in this
case hbox. We have also set an align property that allows us to define four ways
to align our components.

Components and Layouts

[96]

By default, the align property is set to top. This way all the children will be aligned
vertically to the top of the container.

We can also set the align property of the children to middle of the container. If we
want to make the children's components fit the height of the container, we can use
the stretch value as follows:

var win = Ext.create("Ext.window.Window",{
 //...
 layout : {
 type : "hbox",
 align : "stretch"
 },
 //...
});

Chapter 3

[97]

Even if we resize the window, the two panels will be resized to fit the new height.
We can also make our Menu and Content panels have flexible width size too just by
adding the flex property.

var win = Ext.create("Ext.window.Window",{
 //...
items : [{
 title: "Menu",
 html : "The main menu",
 flex : 1
 },{
 title: "Content",
 html : "The main content!",
 flex : 2
 }]
});

Components and Layouts

[98]

Now both components are flexible. When we resize the main window, the two
panels are resized too, maintaining their proportions.

The Content panel is twice the size of the Menu panel. This is because we have
defined the flex property to 2.

The hbox layout calculates the width size of each component according to the
available space in the container. To set the right size, the layout counts the components
that are configured with a flex property and adds their values. In our previous
example, the sum of the two components is three; this means that all the available
space will be divided in three equal portions as shown in the following screenshot:

Chapter 3

[99]

The Content panel is taking two spaces because we configured its flex property to 2
and the Menu panel is taking just one portion of the available space.

Every time we resize the window, the proportions are maintained. The width may
vary depending on the width of the container, but the proportions are always the
same. We can configure as many components as we want with a flex property.

VBox layout
This layout is very similar to the hbox layout. The difference is that this layout makes
the children vertically flexible. We can also align them to the left, center, or stretch.

The following code shows how to make the two panels vertically flexible, one using
only one space of the available height and the other one using two spaces:

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,

Components and Layouts

[100]

 layout : {
 type : "vbox",
 align : "stretch" //center, left, stretchmax
 },
 defaults: {
 xtype : "panel",
 height : 60
 },
 items : [{
 title : "Menu",
 html : "The main menu",
 flex : 1
 },{
 title : "Content",
 html : "The main content!",
 flex : 2
 }]
 });

 win.show();

Even if we have defined a height to the two panels, the vbox layout is setting the
appropriate height to each component. If we resize the window, the proportions of
the two panels is kept.

Chapter 3

[101]

The Menu panel is smaller than the Content panel. This is because we have defined
the flex twice as the Menu panel.

In our previous example, we have used the stretch alignment, but can try other types
such us the center alignment or the left alignment depending on our requirements.

Border layout
The border layout divides the container space into five regions: north, south,
west, east, and center. We can place our children in any of the regions, but
we are required to use the center region.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 layout : "border",
 defaults: {
 xtype : "panel",
 height : 60
 },
 items : [{
 title : "Menu",
 html : "The main menu",
 region : "west",
 width : 100,
 collapsible : true,
 split : true
 },{
 title : "Content",
 html : "The main content!",
 region : "center"
 }]
});

Components and Layouts

[102]

In the previous code, we have defined the layout as border. We have also defined
the center region and the west region:

We have made the Menu panel collapsible. If we click in the small arrow located in
the header or in the division bar, we'll see that the panel will collapse to the left-hand
side. Also, we have defined our Menu panel to be split. This allows us to resize the
Menu panel by dragging the separation bar with our mouse.

We can add more panels in the other regions.

Accordion layout
This layout allows us to show one component at a time. We will see the header of the
inner components and we're going to be able to expand and collapse the components
by clicking in their title bars.

var win = Ext.create("Ext.window.Window",{
 title : "My first window",
 width : 300,
 height : 200,
 maximizable : true,
 layout : {
 type :"accordion"
 },

Chapter 3

[103]

 defaults: {
 xtype : "panel",
 },
 items : [{
 title: "Menu",
 html : "The main menu"
 },{
 title: "Content",
 html : "The main content!"
 },{
 title: "3rd Column",
 html : "Content!"
 }]
});

In the previous code, we have only defined the accordion layout and added a new
panel to the items array. We'll see something as shown in the following screenshot:

When using the accordion layout, we'll see only one panel expanded at a time. The
expanded panel will take the available height to be displayed. It doesn't matter if we
resize the container.

Components and Layouts

[104]

Summary
In this chapter, we have learned about the component's lifecycle. We don't need
to remember every step that is executed in each phase, but we should know the
methods that we can override in our subclasses, so we can add specific functionality
in one of the three phases. When creating our custom components, it's very
important to remember that we need to destroy all our references and internal
components that we have created. This way we'll free memory. We've also learned
about the containers and layouts. Now we know how to add other components to a
container and arrange them according to our needs.

In the next chapter, we're going to talk about the data package. We'll learn about the
models, stores, associations, and so many more exciting things.

It's All About the Data
In this chapter we're going to learn about the new data package in Ext JS 4. There are
lot of changes and differences between Ext JS 4 and Ext JS 3 and a lot of new features.
We'll talk about Ajax, Models, Stores, and the available readers and writers that we
can use in order to store our data locally.

It's important to have a solid understanding of the data package so we can work with
the widgets without problems. Ext JS creates an abstract layer with a lot of classes
and configurations; the idea is to use these classes when dealing with information.
All the widgets and components that show information use the data package to
manipulate and present the data easily.

The topics that we will cover in this chapter are the following. It's important to
mention that a web server is required for this chapter and the following chapters.
It doesn't matter which one you decide to use because we are not using any specific
server-side technology.

• Ajax
• Creating a model
• A collection to store our models
• Working with the store
• The available proxies
• The readers and writers to parse our data

It's All About the Data

[106]

Ajax
Before we start learning about the data package it's important to know how we
can make an Ajax request to the server. The Ajax request is one of the most useful
ways to get data from the server asynchronously. This means that the JavaScript
loop is not blocked while the request is being executed and an event will be fired
when the server responds; this allows us to do anything else while the request is
being performed.

If you are new to Ajax, I recommend you read more about it. There are
thousands of tutorials online, but I suggest you to read this simple article
at http://thomashunter.name/blog/simple-ajax/.

The Ext JS provides an object that is responsible for dealing with all the required
processes to perform a request in any browser. There are a few differences in each
browser, but Ext JS handles all the troubles and gives us a cross browser solution to
make Ajax requests.

The responsible class to make asynchronous requests to the server is the Ext.data.
Connection class. We can instantiate this class to start making requests to the server,
however Ext comes with an instance of this class called Ext.Ajax, we can use this
object to our convenience.

Let's make our first Ajax call to our server. First we need to create an HTML file and
import the Ext library. Then we can add the following code inside the script tag:

Ext.Ajax.request({
 url : "serverside/data.json"
});

console.log("Next lines of code...");

Using the request method we can make an Ajax call to our server. The request
method receives an object containing the configurations for the Ajax call. The only
configuration that we have defined is the URL where we want to make our request.

It's important to note that Ajax is asynchronous. This means that once the request
method is executed the JavaScript engine will continue executing the following lines
of code and it doesn't wait until the server responds.

Chapter 4

[107]

In the previous code we are not doing anything when the server responds to our
request. In order to get the response date we need to configure a callback function to
execute when the server responds with success or failure. Let's modify our previous
example to set up those callbacks:

Ext.Ajax.request({
 url : "serverside/data.json",
 success : function(response,options){

 },
 failure : function(response,options){

 }
});

The success function will be executed only when the server responds with a
200-299 status, which means that the request has been made successfully. If the
response status is 403, 404, 500, 503, and any other error status, the failure
callback will be executed.

Each callback receives two parameters. The first parameter is the server response
object, where we can find the response text and headers. The second parameter is
the configuration option that we used for this Ajax request, in this case the object will
contain three properties: the URL, the success and failure callbacks.

At this point we have our callbacks set, but we're not doing anything inside them.
Normally we need to get the data response and do something with it, let's suppose
we get the following JSON in our response:

{
 "success" : true,
 "msg" : "This is a success message"
}

One of the preferred formats, in the Ext JS community, to send
and receive data to the server, is JSON, but we can also use XML.
JSON stands for JavaScript Object Notation. If you are not familiar
with JSON, I recommend you visit http://www.json.org/.

If we want to show the message, we need to decode that JSON and convert the text
to an object so we can access easily the msg property. Let's add the following code to
our success callback:

Ext.Ajax.request({
 url : "serverside/data.json",
 success : function(response,options){
 var data = Ext.decode(response.responseText);

It's All About the Data

[108]

 Ext.Msg.alert("Message", data.msg);
 },
 failure : function(response,options){

 }
});

First we get the server response as a text using the responseText property from the
response object. Then we use the Ext.decode method to convert the JSON text into
JavaScript objects and save the result in a data variable.

After we have our data object with the server response we will show an alert
message accessing the msg property from the data object. Let's keep in mind that
if we want to show something using the DOM, we need to put our code inside the
onReady method that we have learned in the previous chapter.

If we refresh our browser to execute the code we have modified, we should see
something like the following screenshot:

Now, let's assume that we want to use XML instead of JSON, we will create the
request in a very similar way as in our previous code. The following code should be
saved in a new file at serverside/data.xml:

<?xml version="1.0" encoding="UTF-8"?>
<response success="true">
<msg>This is a success message in XML format</msg>
</response>

We only need to change the URL and the code in the success callback as follows:

Ext.Ajax.request({
url : "serverside/data.xml",
success : function(response,options){

Chapter 4

[109]

var xml = response.responseXML,
node = xml.getElementsByTagName('msg')[0];

Ext.Msg.alert('Message',node.firstChild.data);
 },
failure : function(response,options){

 }
});

We use the responseXML property to get the tree of nodes, and then we get the node
with a msg tag. After that we can get the actual text using the firstChild.data
property from the previous node. If we execute the code we will see something very
similar to our previous example with JSON.

As we can notice, it is easier to work with JSON, we just need to decode the text and
then we can use the objects. XML is a little bit complicated, but we can also use this
format if we feel comfortable with it.

We can also send parameters in our request; we only need to set a new configuration
property to our request as follows:

Ext.Ajax.request({
 url : "serverside/data.json",
 params : {x:1,y:2,z:3},
 success : function(response,options){
 var data = Ext.decode(response.responseText);

 Ext.Msg.alert("Message",data.msg);
 },
 failure : function(response,options){

 }
 });

Using the params property we can set an object of parameters, in this case we will
send only three parameters: x, y, and z, but we can send as many as we need. We can
also pass a string of parameters to the params property as follows:

Ext.Ajax.request({
 url : "serverside/data.json",
 params : "x=1&y=2&z=3",
 success : function(response,options){
 var data = Ext.decode(response.responseText);

It's All About the Data

[110]

 Ext.Msg.alert("Message",data.msg);
 },
 failure : function(response,options){

 }
 });

We can assign an object with an array or other objects
to the params property. Basically we can assign any
structure that we need.

There are times when the server takes too long to respond, so by default the
Ajax request is configured to wait 30 seconds. We can increase or decrease that
time by setting the timeout property in our configurations request as shown in
the following code:

Ext.Ajax.request({
 url : "serverside/data.json",
 params : {x:1,y:2,z:3},
 timeout : 50000,
 success : function(response,options){
 var data = Ext.decode(response.responseText);

 Ext.Msg.alert("Message",data.msg);
 },
 failure : function(response,options){

 }
 });

We have increased the timeout property to 50 seconds, now our request will be
dropped after 50 seconds of waiting for the response.

If we look into the documentation, we will find some other configurations, such as
the scope of the callbacks, headers, cache, and so on. We should read the docs and
play with those configurations too, but the ones that we have covered here are the
most important ones to learn.

Now we know how to get data using Ajax, but we need a way to deal with that data.
Ext JS provides us with a package of classes to manage our data in an easy way; let's
move forward to our next topic.

Chapter 4

[111]

Models
A model is a representation of the information in our application domain. We define
objects that hold our data, so we can easily access performance specific tasks such
as writing and reading. We can define as many models as we need. Each model
represents an entity such as User, Invoice, Client, or whatever we need in our project.

A model may contain fields, validations, and relationships between other models.
We can also set a proxy to persist and pull our data.

Let's create a new file located at js/MyApp/model and we will call it Invoice.js. In
this file we're going to create our Invoice class as follows:

Ext.define('MyApp.model.Invoice',{
extend : 'Ext.data.Model', // Step 1

 idProperty : 'idInvoice',//Step 2
fields : [// Step 3
 {name:'IdInvoice'},
 {name:'taxId'},
 {name:'dateIssued',type:'date',dateFormat:'Y-m-d h:i:s'},
 {name:'name'},
 {name:'address'}
]
});

We're defining a model the same way we defined a class, but in step one we extend
from the Ext.data.Model class, which is the one responsible for adding all the
functionality to our models.

In the second step we are defining the property in our JSON response that will
contain the ID of each record instance. In this case we are going to use the idInvoice
field, but if we don't define the idProperty configuration, the model will use a
property called id by default.

In the third step we define the fields for our model. This is an array of fields; each
field is an object containing the name of the field.

We can also define the type of information that the property will have. In our
previous code the dateIssued field will contain a Date object. When using dates we
need to define the date format that our model is expecting in order to parse the given
string to a date object correctly. We do this by using the dateFormat property.

The available types of data are string, int, float, boolean, and date. If we define a
type, the received value will be converted to the selected type of data.

It's All About the Data

[112]

Once we have defined our model we can create an HTML file. Let's import the Ext
library and our Invoice class file to test our model as follows:

var invoice = Ext.create("MyApp.model.Invoice",{
 taxId : '12345',
 dateIssued : '2012-01-25 11:55:21',
 name : 'Mr. Doe',
 address : '123 ST 987 LA. USA'
});

console.log(invoice);

Using the create method we can instantiate our model class, the second parameter
is an object with the data that our model will contain. Now we can use the get and
set methods to read and write any of the defined fields.

var name = invoice.get('name');

//Modifying one field
invoice.set('name','Mr. Smith');

console.log('Old name:',name);
console.log('New name:',invoice.get('name'));

//Setting many values
invoice.set({
 taxId : 54321,
 address : '10th ST, McAllen TX'
});

The previous code shows how to read and write our data. The set method allows
us to modify one field or even many fields at the same time by passing an object
containing the new values.

If we inspect the invoice instance, we'll find that all the information is held in a
property called data. We should always use the get and set methods to read and
write our models, but if for some reason we need to have access to all the data in our
model, we can use the data object as follows:

//reading
console.log(invoice.data.address);

//writing
invoice.data.address = "Main Avenue 123, Manassas VA";

console.log(invoice.get('address'));

Chapter 4

[113]

We can read and write any fields in our model. However, setting a new value in this
way is not a good practice at all. The set method performs some important tasks
when setting the new value, such as marking our model as dirty, saving the previous
value so we can reject or accept the changes later, and some other important steps.

The advice is to avoid setting values using the data
object directly.

Validations
One of the new features in this new version of Ext is the ability to validate our data
directly in the model. We can define rules on each field and run the validations when
we need it.

In order to define validations into our models we only need to define a property
called validations that contains an array of rules that will be executed when the
validator engine runs.

Let's modify our previous Invoice class to set the taxId as required and its value
should have 5-7 characters. Also, we set the name as required and its format should
be alphanumeric.

Ext.define('MyApp.model.Invoice',{
extend : 'Ext.data.Model',

 //...

validations : [
 {type:'presence',field:'taxId'},
 {type:'length',field:'taxId',min:5,max:7},
 {type:'presence',field:'name'},
 {type:'format',field:'name',matcher:/^[\w]+$/}
]
});

When adding validations we use objects to define each rule. The type property
defines the type of rule that we want to add and the field property defines to which
field this rule will be applied.

There are a few types built within the library such as inclusion, exclusion, presence,
length, format, and e-mail; these are very common validations. We can also add new
types of validations as needed.

It's All About the Data

[114]

When defining a rule, it is required to always use the type and field properties, but
some rules require the use of other extra parameters. The type property represents a
function within the Ext.data.validations object; we can read the documentation
of this object to see what are the specific parameters needed for each rule.

Now let's create an HTML file by importing the Ext library and our Invoice model
to test our previous class as follows:

//Step 1
var invoice = Ext.create("MyApp.model.Invoice",{
 taxId : '12345',
 date : '2012-01-25 11:55:21',
 name : 'Mr John',
 address : '123 ST 987 LA. USA'
});

if(invoice.isValid()){ //Step 2
 console.log('Everything is fine!');
}else{
 var errors = invoice.validate(); // Step 3

 errors.each(function(error){
 console.log(error.field,error.message);
 });
}

The steps are explained as follows:

• Step 1: We instantiated our Invoice model using some data.
• Step 2: We executed the isValid method, which returns true if all the

validations were correct and false if any validation failed. By using this
method we don't know which validation failed.

• Step 3: This step is executed only if there are any errors. The validate
method will get a collection with the failed validations or will be empty if
everything was correct. We can iterate this collection to know the fields and
error messages.

The collection returned by the validate method is an
instance of the class Ext.data.Errors, which extends
from Ext.util.MixedCollection. Therefore, we can
use the each method to iterate in a simple way.

Chapter 4

[115]

When we execute the previous example we will see in the console a message saying
that all validations were successful. Let's change the value of some properties to see
how the validations fail. For example, let's remove some characters from the taxId
property and execute the example again. We will see a message in the JavaScript
console saying that the length of the taxtId property is incorrect:

The message displayed in the previous screenshot is a generic description, but we
can customize the message to our needs. To do this, we only have to override the
property lengthMessage.

Ext.data.validations.lengthMessage = 'Please correct the length';

If we want to change the message of another rule, we only have to concatenate the
name of the rule with Message. For example, presenceMessage, includeMessage,
and so on.

We usually have a lot of custom validations when we develop applications. If we
want to add a new validation we simply add a new function to the Ext.data.
validations object, for example, take a look at the following code:

Ext.define('MyApp.data.validations',{
 override : 'Ext.data.validations',
 singleton : true,

 creditcardMessage : 'Invalid credit card number',

 creditcardRe : /^[\d]{16}$/,

 creditcard : function(config,value){
 return Ext.data.validations.creditcardRe.test(value);
 }
});

In the previous code we created a new class that overrides the Ext.data.
validations object. We can add here as many validations as we need. In this
example we added a credit card rule.

It's All About the Data

[116]

In order to create a rule we need to define a function with the name of the type of
the rule, in this case it is called creditcard. This function receives two parameters,
the first is the configuration that we defined in the model and the second one is the
assigned value of the field.

It's necessary to define the error message for our new rule, in this case
creditcardMessage. As it was previously mentioned we only need to
concatenate the name of the new rule with the word Message.

If we want to test our new validation, we need to modify our Invoice class to add a
new field and the new validation rule.

Ext.define('MyApp.model.Invoice',{
extend : 'Ext.data.Model',

fields : [

 //...

 {name:'creditCard'}
],

validations : [
 {type:'creditcard',field:'creditCard'},
 //...
]
 });

In the previous code we only added a new field called creditCard, now we add the
new validation rule to the array of validations.

Once we have modified our Invoice class we need to modify our HTML file, where
we're testing the validations, and add information to the new credit card field.

var invoice = Ext.create("MyApp.model.Invoice",{
 taxId : '12345',
 date : '2012-01-25 11:55:21',
 name : 'Mr John',
 address : '123 ST 987 LA. USA',
 creditCard: '1234567890'
});

Chapter 4

[117]

If we run the test, we'll see the validation error because the credit card number is
invalid. We should set a 16 characters value to the credit card field if we don't want
the error message to appear:

There are a few other built-in validations in the Ext.data.validations object
such as inclusion, exclusion, and e-mail. Most of the time those validations are not
enough, but now we know how to add more.

Relationships
We can create relationships between models to relate our data. For example, an
invoice contains items, each item is an object with properties such as price, quantity,
and description.

Ext JS 4 adds support to create one-to-many and many-to-one associations in a very
easy way. Let's modify our Invoice class to create a one-to-many association:

Ext.define('MyApp.model.Invoice',{
extend : 'Ext.data.Model',

 //...

 hasMany : [
 {model:'MyApp.model.Item',name:'getItems'}
]
});

Using the hasMany property we can define the association. In this example, we're
assigning an array of objects because we can create as many associations as we need.
Each object contains a model property, which defines the model with the Invoice
class that will be related.

Additionally, we may define the name of the function that will be created in our
Invoice class to get the items related. In this case we used getItems; if we don't
define any name, Ext will pluralize the name of the child model, for this example it
would be items.

It's All About the Data

[118]

Now we need to create the Item class. Let's create a new file located at js/MyApp/
model called Item.js with the following content:

Ext.define('MyApp.model.Item',{
 extend : 'Ext.data.Model',
 fields : [
 {name:'quantity',type:'int'},
 {name:'description',type:'string'},
 {name:'unitPrice',type:'float'},
 {name:'subtotal',type:'float'}
]
});

There's nothing new in the previous code, just a regular model with a few fields
describing an item of an invoice.

In order to test our relationship we need to create an HTML file importing the Ext
library and our two models. Then we can test our models as follows:

//Step 1
var invoice = Ext.create("MyApp.model.Invoice",{
 taxId : '12345',
 date : '2012-01-25 11:55:21',
 name : 'Mr John',
 address : '123 ST 987 Los Angeles, CA. USA'
});

invoice.getItems().add(// Step 2
 {quantity:10,description:'Development services',unitPrice:65,subtot
al:650},
 {quantity:20,description:'Design services',unitPrice:55,subtot
al:1100}
);

//Step 3
invoice.getItems().each(function(item){
 console.log(item.get('description'));
});

The steps are explained as follows:

• Step 1: We have created the Invoice class with some data such as the taxId,
date, name, and address.

Chapter 4

[119]

• Step 2: We execute the getItems method. When we define our relationship
we set the name of this method using the name property in the association
configuration. This method returns an Ext.data.Store instance; this class
is a collection to manage models in an easy way. We are also adding two
objects to the collection using the add method, each object contains the data
for the Item model.

• Step 3: We are iterating the items collection from our invoice object. Using
the get method we are printing the description for each model to the console,
in this case we have only two models in our store.

Dealing with the store
As mentioned before a store is a collection of models that acts as a client cache to
manage our data locally. We can use this collection to perform some tasks such as
sorting, grouping, and filtering the models in a very easy way. We can also pull data
from our server using one of the available proxies and a reader to interpret the server
response and fill the collection.

A store is usually added to the widgets to display data. Components such as the
grid, tree, combobox, or data view use a store to manage the data. We will learn
about these components in future chapters. If we create a custom widget, we should
use a store to manage the data too. This is why this chapter is really important, we
use models and stores to deal with the data.

In order to create a store we need to use the Ext.data.Store class. The following
example will use the Invoice model that we already have and will extend the store
to create a collection of invoices:

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store', //Step 1
model : 'MyApp.model.Invoice' //Step 2
});

The steps are explained as follows:

• Step 1: To define a store we need to extend from the Ext.data.Store class.
This class is responsible for dealing with the models.

• Step 2: We associated the model that our store will be using. It is required to
specify a valid model class; in this case we're using our Invoice class that we
have been working on in our previous examples.

It's All About the Data

[120]

Once we have our store class defined we are going to create an HTML page to run
our test, let's import the Ext library, our Invoice model, and our Invoices store.

var store = Ext.create("MyApp.store.Invoices");

//counting the elements in the store
console.log(store.count());

We can use the create method to instantiate our store class, in this example we
don't need to pass any parameter, but we could do it as any other class.

If we would like to know the number of items that are contained in our store, we
can use the count method. In this case we're printing the number returned on the
JavaScript console, which will be zero because our store is empty at this moment.

Adding new elements
Adding elements to the collection is very simple, we need to create an Invoice
model with data and we will use the add or insert methods to add the new item to
our store as shown in the following code:

var invoice = Ext.create("MyApp.model.Invoice",{ //Step 1
 taxId : "32FG83",
 name : "John Doe",
 address : "123 ST, TN USA",
 creditCard : "1234567890123456"

});

store.add(invoice); //Step 2

console.log(store.count());

The steps are explained as follows:

• Step 1: We created the model that we want to add to our store, we are also
setting values to some of the fields.

• Step 2: We executed the add method to append our model to the collection.
It's important to know that using the add method will always insert the
model in the last position of the collection.

Finally, we count our items again and we will see a number 1 in our
JavaScript console.

Chapter 4

[121]

We can also add a new item by just sending an object containing the data and the add
method will create the model instance for us.

store.add({
 taxId : "NT629Y",
 name : "Susan Smith",
 address : "312 ST, CA USA",
 creditCard : "1234567890123456"

});

console.log(store.count());

When running the previous code we will see a number 2 in the JavaScript console.
We can even add many items at once by passing an array of models to the add
method as shown in the following code:

var model1 = Ext.create("MyApp.model.Invoice",{
 taxId : "3E72KO",
 name : "Carl Jr",
 address : "789 ST, TX USA",
 creditCard : "1234567890123456"

});
var model2 = Ext.create("MyApp.model.Invoice",{
 taxId : "897HG56",
 name : "Hazel Doe",
 address : "987 ST, CA USA",
 creditCard : "1234567890123456"

});

store.add([model1,model2]);

console.log(store.count());

We have added two models in the same method call, but we can pass whatever
models we need in the array.

If we see the console, there will be a number 4 printed because we have four
elements in our collection. As mentioned before if we use the add method, the new
element will be placed in the last position of the collection, but what if we want to
add the new element to the first position or maybe somewhere else? We can use the
insert method to add the new element wherever we need.

It's All About the Data

[122]

The following example shows how to add a new item to the first position of
the collection:

store.insert(0,{
 taxId :"L125AP",
 name : "John Smith",
 address : "159 ST, TX USA",
 creditCard : "1234567890123456"
});

console.log(store.count());

The insert method accepts two parameters. The first parameter should be the
position where we want to add the new element. In this case we are using 0 because
we want the new record to be inserted in the first position, but we can use any
position we want. The second parameter should be an object containing the data for
our model; it could also be a model or even an array of objects.

Looping through the elements
So far we know how to retrieve the number of elements in the existing store, but
we're not sure if the insert method added the new record in the first position. We
can iterate through the elements of the store by using the each method as follows:

store.each(function(record,index){
 console.log(index,record.get("name"));
});

The each method receives a function as the first parameter. This function will
be executed for every record of the store; the anonymous function receives two
parameters for our convenience, the record and index parameters of each iteration.

We can also set the scope where the anonymous function will be executed by passing
a second parameter to the each method with the object where the anonymous
function will be executed.

In our previous example we only printed the index and name properties in our
model, but we can access any property or method defined in our Invoice class.

Retrieving the records
Once we have content in our store we can retrieve objects or perform a search of the
collection of models. There are several ways of retrieving models. We are going to
look at the most common ways.

Chapter 4

[123]

If we only want to get a model at a specific position, we can use the getAt method
as follows:

var model3 = store.getAt(2);

console.log(model3.get("name"));

In our previous example we get the model that is in the third position of the
collection. The first position in the store uses the index 0, so if we want to get the third
element we use the index 2. In our example the name printed should be Susan Smith.

There are also methods to retrieve the first element of the collection and the last
element; for this we can execute the first and last methods as shown in the
following code:

var first = store.first(),
 last = store.last();

console.log(first.get("name"),last.get("name"));

Our previous code will print the name of the first and last element in our store; in
this case we will see the name of John Smith and Hazel Doe.

There are times when we need to get many records at once, so there's a method
called getRange to retrieve a list of records. We may define the limits or we can
even get all the records in the collection as shown in the following code snippet:

var list = store.getRange(1,3);

Ext.each(list,function(record,index){
 console.log(index,record.get("name"));
});

In the previous code we are retrieving records from the index number 1 to the index
number 3. We are going to see three elements in our JavaScript console.

We have been adding records to the store, but we didn't assign an ID for any of
the models we have in our store. If we don't assign an ID, the model will be
marked as phantom, this means that the model is a new record and it's not present
in our database.

We can get all the new records in order to send them to the server and save them as
shown in the following code:

var newelements = store.getNewRecords();

Ext.each(newelements,function(record,index){
 console.log(record.getId(),record.get("name"));
});

It's All About the Data

[124]

Using the getNewRecords method we can get an array containing all the new records
that don't exist in our database. This method looks for every record that's a phantom
and contains valid data.

It's important to see that even if the model is marked as
phantom, but if it doesn't pass the validations then it will
not be returned in the collection of new records.

We can also get the modified records. Let's add a new model to the store containing
the ID property so it won't get marked as phantom, and then let's modify the content
of one of their fields as shown in the following code:

//Step 1
store.add({
 idInvoice : 672,
 taxId : "VI8732",
 name : "Eddy Smith",
 address : "961 ST, NY USA",
 creditCard : "1234567890123456"
});

//Step 2
var model4 = store.last();
model4.set("name","EddyMcFly");

var updated = store.getUpdatedRecords(); //Step 3
Ext.each(updated,function(record,index){
 console.log(record.getId(),record.get("name"));
});

The steps are explained as follows:

• Step 1: We added a new record with the idInvoice property, this way the
record is not marked as phantom.

• Step 2: We got the last record in our store and modified the name of our
model. When we modify the original information the record is marked
as dirty.

• Step 3: We called the getUpdatedRecords method to get all the records
marked as dirty. In this case we only have one record updated, but the
method returns an array with all modified records.

Chapter 4

[125]

Removing records
We have been adding and accessing records in our store, but if we would like to
remove records from the store, we have three ways of doing this task.

store.remove(model1);
store.each(function(record,index){
 console.log(index,record.get("name"));
});

We executed the remove method and passed the model from where we want to
delete the record. In our previous code we are passing the model variable that we
created before. If we look at the JavaScript console, we will see that the Carl Jr record
does not exist anymore.

We can also remove many records at once. We only need to pass an array of models
to the remove method and those models will be removed from the store, as shown in
the following code:

store.remove([first,last]);
store.each(function(record,index){
 console.log(record.get("name"));
});

When we execute the code we will see that the John Smith and Hazel Doe records
are gone, we should not see those names in the JavaScript console.

There are times when we may not have the reference to the model that we want to
delete. In those cases we can remove a record by its position in the store, as shown in
the following code:

store.removeAt(2);
store.each(function(record,index){
 console.log(index,record.get("name"));
});

The removeAt method accepts an index; the record located at this position will be
removed. Now we can only see two names in the JavaScript console.

If we want to remove all the records in our store, we only need to call the removeAll
method and the store will be cleared.

store.removeAll();
console.log("Records:",store.count());

At this moment our store is empty. If we execute the count method, we will get zero
as a result. Now we know how to add, retrieve, and remove records from our store.

It's All About the Data

[126]

Retrieving remote data
So far we have been working with local data and hard-coding our information
to create a store of records. But in real world applications we have our data in a
database or maybe we get the information using web services.

Ext JS uses proxies to send and retrieve the data to the source. We can use one of the
available proxies to configure our store or model.

A proxy uses a reader to decode the received data and a writer to encode the data
to the correct format and send it to the source. We have three available readers to
encode and decode our data: the Array, JSON, and XML readers. But we have only
two writers available, only for JSON and XML.

There are seven types of proxies at our disposal. If we want to change our source
of data, we should only change the type of proxy and everything should be fine.
For example, we may define an Ajax proxy for our store or model and then we can
change it for a local storage proxy.

Ajax proxy
In order to use this proxy we need to set up a web server to make the Ajax requests
correctly. If we don't have a web server to test our code, we can use the WAMP
server. If we are in Windows (http://www.wampserver.com/), WAMP installs an
Apache 2 web server, a MySQL database, and PHP. If we are on Mac, we can enable
the Web Sharing service in the System Preferences section or we can also install
XAMP (http://www.apachefriends.org/es/xampp.html). Using a web server is
required so we can make Ajax request correctly.

When we have everything ready, we can modify our previous example, where we
created the Invoices class to add the required proxy.

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store',
model : 'MyApp.model.Invoice',

proxy : {
 type : 'ajax',
 url : 'serverside/data.json'
 }
});

The previous code adds a new property to the store called proxy. We are setting a
configuration object containing only two properties.

Chapter 4

[127]

The type property defines the type of proxy that we're going to use. In this
case we specified ajax, but we can use any of the available proxies. We can find
a list of proxies at http://docs.sencha.com/ext-js/4-1/#!/api/Ext.data.
proxy.Proxy.

The url property defines the resource that we will request using Ajax. It's important
to mention that the URL must be in the same domain so we won't get any errors
when making the Ajax request.

At this point we can load the data from our web server using Ajax. In order to
test our code let's create an HTML file importing the Ext library, our model, and
our store.

var store = Ext.create("MyApp.store.Invoices"); //Step 1

store.load(function(){ //Step 2

store.each(function(record){ //Step 3
console.log(record.get("name"));
 });

});

The steps are explained as follows:

• Step 1: We create the store as usual and save the reference in a variable.
• Step 2: We execute the load method. This method internally executes the

read operation, makes the Ajax call to the server, and then loads the data into
the store. The function that we give to the load method as a parameter is a
callback that will be executed after the records are loaded into the store. We
are doing it in this way because Ajax is asynchronous and we don't know for
sure when the server is going to respond.

• Step 3: The last step iterates through the records of the store and prints the
name for each invoice in the JavaScript console.

Before we execute our example we should create the serverside/invoices.json
file. We're going to use JSON to encode the data as follows:

{
 "success" : true,
 "data" : [{
 "idInvoice" : 1,
 "taxId" : "12345",
 "date" : "2012-05-13 15:25:32",
 "name" : "Software & Design Solutions Inc",

It's All About the Data

[128]

 "address" : "123th ST, St. Luis Mo."
 },{
 "idInvoice" : 2,
 "taxId" : "43221",
 "date" : "2012-05-13 15:25:32",
 "name" : "Text and Code Inc",
 "address" : "123th ST, San Antonio TX."
 },{
 "idInvoice" : 3,
 "taxId" : "432743",
 "date" : "2012-05-13 15:25:32",
 "name" : "Developers Rlz Inc",
 "address" : "123th ST, San Francisco CA."
 }]
}

We have an object that contains an array of objects that holds our information, each
object contains the same properties as that of our Invoice model.

Now if we execute the test, we won't see anything in the console, just an empty
space. If we execute the count method in our store, we will see that it only contains
one element, but it should contain three instead.

This is happening because the proxy is missing a reader. When configuring a reader
we define the type of data that the proxy will receive and a few other things in order
to interpret correctly the sever response.

JSON reader
JSON is the most popular format in the Ext community to send and receive data
from the server. We can configure our reader so we will be able to understand the
response and to fill the store with models containing the correct information.

Let's modify our Invoices store to add the JSON reader to the proxy.

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store',
model : 'MyApp.model.Invoice',

proxy : {
 type : 'ajax',
 url : 'serverside/invoices.json',
 reader : {
 type : 'json',
 root : 'data'
 }
 }
});

Chapter 4

[129]

We are defining a new property called reader, which accepts an object
configuration; we can also pass an instance of the Ext.data.reader.Json class.

The configuration object requires at least two properties. There are a few other
configurations we can set, but these two are required in order to work properly.

The type property defines how our information is decoded. In this case we are
assigning the json type to the property, but we can also use the xml type if needed.

The root property allows us to define the name of the property in the server
response, where all objects containing the information for our models are located.
This property should be an array in our JSON response. In this case we set data
because our JSON response uses that name, but it could be anything. If we have
nested objects, we can use a dot (.) to go as deep as we need, for example, let's
suppose we get the following response:

{
 "success" : true,
 "total" : 300,
 "output" : {
 "data" : [{

 //... our data

 }]
 }
}

The previous response contains the array of information inside of an object output;
we need to configure our reader so it should be able to read this response correctly.
We need to change the root property as follows:

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store',
model : 'MyApp.model.Invoice',

proxy : {
 type : 'ajax',
 url : 'serverside/invoices.json',
 reader : {
 type : 'json',
 root : 'output.data'
 }
 }
});

It's All About the Data

[130]

We have only modified the root property using a dot to get one level deeper. We
can go as deep as we need. It doesn't matter how many levels we have to go, but we
need to make sure that we are setting correctly this configuration, pointing to the
array of data, where our models will be filled.

Let's test our code again by refreshing the browser, now we'll see the three names in
our JavaScript console as shown in the following screenshot:

XML reader
If we would like to use XML instead of JSON, we should only change the type or the
reader to our proxy. We can set an instance of the Ext.data.reader.Xml class or set
the right type to our configuration object as follows:

proxy : {
 type : 'ajax',
 url : 'serverside/invoices.xml',
 reader: {
 type : 'xml',
 root : 'data',
 record: 'invoice'
 }
}

We have only changed the url property to our reader to point to an XML file that
contains our information instead of the JSON file. We also change the type property
to xml. This way our reader will be able to read the server response correctly. Lastly,
we added a new property to our reader called record. This property allows us to
define the tag where the information will be in the XML response, in this case we
use invoice.

Now let's create the XML file that holds our information. This file should be called
serverside/invoices.xml and will contain the following code:

<?xml version="1.0" encoding="UTF-8"?>
<data success="true">
 <invoice>

Chapter 4

[131]

 <idInvoice>1</idInvoice>
 <taxId>12345</taxId>
 <dateIssued>2012-05-13 15:25:32</dateIssued>
 <name><![CDATA[Software & Design Solutions Inc]]></name>
 <address>123th ST, St. Luis Mo.</address>
 </invoice>
 <invoice>
 <idInvoice>2</idInvoice>
 <taxId>43221</taxId>
 <dateIssued>2012-05-13 15:25:32</dateIssued>
 <name><![CDATA[Text and Code Inc]]></name>
 <address>123th ST, San Antonio TX</address>
 </invoice>
 <invoice>
 <idInvoice>3</idInvoice>
 <taxId>432743</taxId>
 <dateIssued>2012-05-13 15:25:32</dateIssued>
 <name><![CDATA[Developers Rlz Inc]]></name>
 <address>123th ST, San Francisco CA</address>
 </invoice>
</data>

First we have defined the root node that contains the invoices information. This root
node is called data. If we change the name of this node, we should also change the
root property in our reader to match this node.

The invoice node contains the data for our models. We have defined a new
record property in our reader configuration to set the name of the node, where the
information should be in our XML response.

Now let's test our changes by refreshing our browser. If everything goes fine, we will
see three names in our JavaScript console as shown in the following screenshot:

It's All About the Data

[132]

The result is exactly the same when we use the JSON reader, however if we go to
the Network tab in the developers tools, we can see that in this case the server is
responding with XML:

By using readers we can switch easily from using JSON or XML as our source of data.
We don't have to change anything else in our code, just configure each reader correctly.

Mappings
If we look at the XML response again, we will notice that in each invoice node we
have all the information for our models. In this case the name of each tag matches the
name of the properties in our models. This is why the data gets into the right field,
however, if for some reason the names of the tags in this XML file don't match the
name of the fields in our model, we can configure our model to map each field with
the right node.

Let's change the XML response with different names in the tags that contain the
final information.

<?xml version="1.0" encoding="UTF-8"?>
<data success="true">
 <invoice id="1">
 <taxId>12345</taxId>
 <date>2012-05-13 15:25:32</date>

Chapter 4

[133]

 <client><![CDATA[Software & Design Solutions Inc]]></client>
 <addr>123th ST, St. Luis Mo.</addr>
 </invoice>
 <invoice id="2">
 <taxId>43221</taxId>
 <date>2012-05-13 15:25:32</date>
 <client><![CDATA[Text and Code Inc]]></client>
 <addr>123th ST, San Antonio TX</addr>
 </invoice>
 <invoice id="3">
 <taxId>432743</taxId>
 <date>2012-05-13 15:25:32</date>
 <client><![CDATA[Developers Rlz Inc]]></client>
 <addr>123th ST, San Francisco CA</addr>
 </invoice>
</data>

Now, if we execute our previous example again, we should see three blank spaces
in our JavaScript console. This is because the name of the fields in our model don't
match with the nodes in our XML file.

In order to fix the problem we can add a new configuration to our field's definition in
our model. Let's go back to our Invoice class and add the mapping property to each
field as follows:

Ext.define('MyApp.model.Invoice',{
extend : 'Ext.data.Model',

idProperty : 'idInvoice',
fields : [
 {name:'idInvoice',mapping:'@id'},
 {name:'taxId'},
 {name:'dateIssued',type:'date',dateFormat:'Y-m-d
h:i:s',mapping:'date'},
 {name:'name',mapping:'client'},
 {name:'address',type:'string',mapping:'addr'},
 {name:'creditCard'}
],

 //...

 });

The mapping property allows us to define from where each field will be filled. By
default it searches for a node with the same name as the property, but if we defined
a mapping property, the reader will look for what we defined in here.

It's All About the Data

[134]

The previous code shows how we use the mapping property. In this case we set the
idInvoice property to take its value from @id. This means that the reader will not
look for a tag or node in our XML, it will look for the attribute id in the invoice node
to take its value.

The dateIssued property will take its value from the date node. The name field will
get its value from the client node and finally the address field will be filled from
the addr node.

If we refresh our browser again, we will see the three names in our JavaScript
console displayed correctly, this is because we set the correct mapping to each field:

The mapping property works exactly the same in the JSON reader. By default the
reader looks for a property in our response with the same name as the field, but if
we define a mapping property in our field definition then the reader will use this
property instead to fill the field.

Sending data
Once we have added, modified, or even deleted our original data we should send
our changes to our server. The Ext allows us to do that by using a writer to encode
our data to the right format. We have two types of writers available, for JSON and
XML format.

Let's modify our store class and define a JSON writer to our proxy:

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store',
model : 'MyApp.model.Invoice',

 //Ajax proxy with JSON reader and writer
proxy : {
 type : 'ajax',
 url : 'serverside/invoices.json',
 reader : {
 type : 'json',

Chapter 4

[135]

 root : 'data'
 },
 writer : {
 type : 'json',
 allowSingle : false
 }
 }
});

By setting a writer property we can define the type of format to encode our data.
In this case we are setting json in the type property. Also we have defined the
allowSingle property to false. This means that even if we modify only one model,
it will be sent wrapped in an array. This way we will always receive an array of
elements in our server containing our information.

Now let's create an HTML file to test our changes. Import the Ext library, our model,
and our store class too, then we add the following code:

var store = Ext.create("MyApp.store.Invoices");

store.load({
callback : function(){
var model1 = Ext.create("MyApp.model.Invoice",{
taxId : "3E72KO",
name : "Carl Jr",
address : "789 ST, TX USA",
creditCard : "1234567890123456"
 });
var model2 = Ext.create("MyApp.model.Invoice",{
taxId : "897HG56",
name : "Hazel Doe",
address : "987 ST, CA USA",
creditCard : "1234567890123456"
 });
store.add([model1,model2]);

store.removeAt(0);

store.sync();
 }
});

First we create an instance of our Invoices class and save the reference in the
store variable.

It's All About the Data

[136]

Then we perform a load call to make an Ajax request to the server and fill the store
with the initial information.

After the server responds and the store is filled with the initial information, we create
two new instances of our Invoice model and add them to the store. We also remove
the record that is in the position zero.

Once we have modified our data we should synchronize our changes with the server.
We do this by calling the sync method in our store. Executing this method will create
two Ajax calls to our server. The first one to add the new records and the second one
to send the information to delete just one record. If we look at the Network tab in the
Chrome Developer Tools, we will see the two calls that are being made:

We will also notice that all the requests are being made to the same URL. At this
point we don't have a way to differentiate if the records sent are going to be deleted
or added.

In order to fix this we need to send each request to a different URL so the server can
perform the right task with our data. Let's modify our store class to set the right
URL for each action:

Ext.define('MyApp.store.Invoices',{
extend : 'Ext.data.Store',
model : 'MyApp.model.Invoice',

 //Ajax proxy with JSON reader and writer

Chapter 4

[137]

proxy : {
 type : 'ajax',
 //url : 'serverside/invoices.json',
 api : {
 create : 'serverside/save',
 read : 'serverside/invoices.json',
 update : 'serverside/update',
 destroy : 'serverside/remove'
 },
 reader : {
 type : 'json',
 root : 'data'
 },
 writer : {
 type : 'json',
 allowSingle : false
 }
 }
});

Using the api property in our proxy we can set a different URL for each CRUD
operation. This property accepts four operations to create, read, update, and delete.
We can set different URLs for each operation.

Before we test our example again we need to create the files we defined in the api
property, otherwise we'll get a 404 error and the synchronization process will fail.
Once we have our files in place let's refresh our browser and see the request in the
Network tab as shown in the following screenshot:

Now we can see how the proxy is calling the right URL in the server to perform the
right operation. If we inspect the request, we will see the parameters that are sent. All
we need to do in our server is to take those parameters and perform the required task.

It's All About the Data

[138]

Summary
In this chapter we have been working with data, we learned how to create models
with fields, mappings, validations, and relationships. We also worked with a
collection of models using the store class, pulling, and sending data to the server
using proxies, readers, and writers.

It's important to mention that every widget in Ext JS that displays data uses a store
and models to manage all the data. When we modify a model in our store, the widget
will automatically refresh its view. For example, if we have a grid and we want to
delete a record, we only use the remove method from the store. By doing this the grid
automatically will update the rows and the deleted row won't appear anymore.

In the next chapter we are going to learn about events and how we can respond to
the user interaction. So far we haven't used events, but events are one of the most
important parts of the JavaScript development world.

Buttons and Toolbars
When dealing with buttons we will definitely need a way to arrange them whether
we use them in a window or panel. Using a toolbar is a great way to add our buttons
to the top or bottom of our panel; we can also use groups or menus. The Ext provides
us with a lot of flexibility to create beautiful interfaces.

Once we have our UI ready we can add actions to our widgets using callbacks and
events to process the user interaction. In this chapter we are going to learn about the
observable pattern used by the Ext components and widgets. We'll also learn how to
define buttons and handlers to execute actions when the user clicks on them.

We need to understand how events are defined in Ext JS so we can take advantage of
them when creating custom components.

Event driven development
Before we start talking about the components we need to understand how the
events and listeners work behind the scenes. The first thing we need to learn is the
observable pattern.

Basically the observable pattern is designed to allow entities or objects to
communicate between each other using events. When a certain action occurs inside
an object or component, this object should broadcast an event to whoever is listening.

For example, when a button is clicked, the button fires the click event, when a row
of a grid is clicked the grid fires the itemclick event. All components have defined
events that are fired when an action occurs.

The component that is firing the event doesn't know who will listen to its messages,
but its responsibility is to let the others know that something happened and maybe
other components will do something about it or nothing at all.

Buttons and Toolbars

[140]

The Ext.util.Observable base class allows us to add, fire, and listen to events
from a specific object or component and do actions when that event is executed. All
widgets included in the Ext JS library extend from the Ext.util.Observable class,
(as a mixing) and they all fire events that we can listen to perform actions and bring
our widgets to life.

As mentioned before we can define and fire new events on our custom components
using the same Ext.util.Observable class.

Let's create an HTML page and import the Ext JS library, then let's create another JS
file to define a new class; we're going to name this class as Employee.

Ext.define('MyApp.users.Employee',{
extend : 'Ext.util.Observable',
attempts : 0
});

The previous code shows how we can add support for custom events to our classes.
In this example we are extending from the Ext.util.Observable class, but we can
add this class as a mixin too.

Once we have the support for events in our classes, we can define new events using
the addEvents method as follows:

Ext.define('MyApp.users.Employee',{
extend : 'Ext.util.Observable',
attempts: 0,

constructor: function(){

 this.addEvents('success','fail');

this.callParent();
 }
});

We are defining a constructor method and inside of this method we define two
new events. In this case we are defining the success and fail events, but we can
define as much as we need.

Chapter 5

[141]

The callParent method is important because it calls the constructor of the
superclass. Every time we overwrite a method on the subclass we should call
the original method on the superclass.

We are going to create a fake login method and fire the event according to the result
of the validation.

Ext.define('MyApp.users.Employee',{
 //...

login: function(usr,pwd){
var me = this;

Ext.Msg.wait('Please wait','Loading...',{
interval: 300
});
//faking the server response
setTimeout(function(){
Ext.Msg.hide();
me.attempts++;
if(usr === 'john' &&pwd === '123'){
me.fireEvent("success",me);
}else{
me.fireEvent("fail",me.attempts);
}
},3000);
 }
});

In the previous code we are faking a login method. We first show a wait message,
then a timeout will be executed three seconds later. Lastly, we fire the success or
fail event depending on the usr and pwd parameters.

We use the fireEvent method to broadcast a message to all the listeners. Our
employee class doesn't know who is listening for that event, but it just fires the event
with the corresponding parameters.

The previous code is just an example of a login for
educational purposes only. We should never validate
the username/password on the client side.

Buttons and Toolbars

[142]

Now we are able to listen to the event from the outside. Let's create an HTML file,
import the Ext library and our employee class, and then we'll create an instance of
our employee class as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Observable pattern</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript" src="js/MyApp/users/Employee.js"></
script>

<script type="text/javascript">
Ext.onReady(function(){

var employee = Ext.create("MyApp.users.Employee");

});
</script>
</head>
<body>
</body>
</html>

We're using the onReady method to execute our code when the DOM is ready to be
used. Once everything is ready we can create our employee instance and then listen
for the success or fail event using the on method as in the following code:

employee.on("success",function(user){
Ext.Msg.alert("Success","Welcome to our application");
});

employee.addListener("fail",function(attempts){
Ext.Msg.alert("Error","Wrong credentials! "+attempts+" attempts");
});

Chapter 5

[143]

The on method is the shorthand version of the addListener method. We can use any
of them to listen to events. These methods are defined in the Observable class that
we are extending.

The first parameter is the event name that we want to listen to. In this case success
and fail. The second parameter is the function that we want to execute when the
event is fired. In this case we are using an anonymous function, but we can pass a
reference to a function too such as the following example:

employee.on("success",callback);

functionclallback(user){
Ext.Msg.alert("Success","Welcome to our application");
}

In the previous code we are using only two parameters on the on method, but
there are two more parameters that we can pass. The third parameter is the
scope of the function that will be executed and the last parameter is an object with
options (commonly known in Ext JS as a config object) such as delay, buffer, and
many others.

At this point we have defined our events and listeners. Now is time to execute the
login method and wait for the fake response.

Ext.onReady(function(){
var employee = Ext.create("MyApp.users.Employee");

employee.on("success",function(user){
Ext.Msg.alert("Success","Welcome to our application");
});

employee.addListener("fail",function(attempts){
Ext.Msg.alert("Error","Wrong credentials! "+attempts+" attempts");
});

employee.login('john','123');

});

Buttons and Toolbars

[144]

In the previous code we are using wrong credentials. This means that the
fail event will be fired; if we refresh our browser we'll see something like
the following screenshot:

As we can see the fail event is executed. Now, if we execute our example with
the right credentials then the success event will be fired and we'll see the
welcome message.

Events are the way we can execute actions when something is happening; as we
can see in the previous example the Employee class is responsible only for
broadcasting the result of the validation. The class itself doesn't care about who
may be listening, but on the outside an object is listening and reacts according to
the messages received.

Chapter 5

[145]

This is a very powerful feature in Ext JS, the ability to add, fire, and listen to
custom events.

A simple button
Once we know how the Ext.util.Observable base class works and the methods
that we can use, it's time to dig into the widgets. We're going to start with the
buttons. In order to create a button we need to instantiate the Ext.button.Button
class. This class manages all the ins and outs of a single button.

Let's create an HTML file and import the Ext library and instantiate the Button class
as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Button</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript">
Ext.onReady(function(){

varbtn1 = Ext.create("Ext.button.Button",{
text: "Remove",
renderTo: Ext.getBody()
});

});
</script>
<style type="text/css">
body{padding:50px;}
</style>
</head>
<body>
</body>
</html>

Buttons and Toolbars

[146]

In the previous example we are creating an instance as usual and passing an object
with only two configurations. There are many more configurations, but for now
these two are enough.

The text property allows us to define the text that will be shown when the button
will be rendered on the DOM.

The renderTo property allows us to define the place where we want to render our
button. In this case we are rendering the button on the body of the document, but we
can also add the button to any other container using the ID of the DOM element.

If we refresh our browser, we'll see a button in the document's body as shown in the
following screenshot:

By default the button is small, but we can change the size to medium and large.
There's a scale property that we can use to set the size of the button.

varbtn1 = Ext.create("Ext.button.Button",{
text: "Remove",
scale: 'small',
renderTo: Ext.getBody()
});

varbtn2 = Ext.create("Ext.button.Button",{
text: "Remove",
scale: 'medium',
renderTo: Ext.getBody()
});

Chapter 5

[147]

varbtn3 = Ext.create("Ext.button.Button",{
text: "Remove",
scale: 'large',
renderTo: Ext.getBody()
});

The previous code creates three buttons using the three different sizes available. We
can also set a custom size using the width and height properties. This is possible
because the Button class extends from Component class:

It's very common in any application to use icons to differentiate buttons. We can use
the iconCls property to set a CSS class that adds an image as a background. For the
small buttons we use a 16 x 16 icon, for the medium buttons we use a 24 x 24 icon,
and for the large buttons we can use a 32 x 32 icon.

First we need to create the CSS class as follows:

.remove-icon16{
background:transparenturl('images/delete16.png') center 0 no-repeat
!important;
}
.remove-icon24{
background:transparenturl('images/delete24.png') center 0 no-repeat
!important;
}
.remove-icon32{
background:transparenturl('images/delete32.png') center 0 no-repeat
!important;
}

Buttons and Toolbars

[148]

We have defined three CSS classes for each available size. Please note that you
have to use your very own icons. The previous code assumes that we have a folder
called images with three different images inside. In order to make our example work
we need to include those images in that folder. Feel free to use your own images for
this example.

Once we have our CSS in place we need to set one of them to each of our buttons.

varbtn1 = Ext.create("Ext.button.Button",{
text: "Remove",
//scale: 'small',// By default is small
iconCls: "remove-icon16",
renderTo: Ext.getBody()
});

varbtn2 = Ext.create("Ext.button.Button",{
text: "Remove",
iconCls: "remove-icon24",
scale: 'medium',
renderTo: Ext.getBody()
});

varbtn3 = Ext.create("Ext.button.Button",{
text: "Remove",
iconCls: "remove-icon32",
scale: 'large',
renderTo: Ext.getBody()
});

Using the iconCls property we can relate any CSS class to the button. If we refresh our
browser we can see that each button has an icon as shown in the following screenshot:

Chapter 5

[149]

By default the icon is aligned to the left-hand side, but we can set the position to the
top, bottom, and right-hand side too. We do this by using the iconAlign property.

varbtn1 = Ext.create("Ext.button.Button",{
text: "Remove",
scale: 'small',
iconCls: "remove-icon16",
iconAlign: 'top',
renderTo: Ext.getBody()
});

varbtn2 = Ext.create("Ext.button.Button",{
text: "Remove",
iconCls: "remove-icon24",
iconAlign: 'right',
scale: 'medium',
renderTo: Ext.getBody()
});

varbtn3 = Ext.create("Ext.button.Button",{
text: "Remove",
iconCls: "remove-icon32",
iconAlign: 'bottom',
scale: 'large',
renderTo: Ext.getBody()
});

The previous code sets the alignment of the icon. If we refresh our browser we
can see how every button has the icon in a different position as shown in the
following screenshot:

Buttons and Toolbars

[150]

Once we have our buttons in place it is very likely that we want to add some actions
when they are clicked. In the coming chapters we will see how to listen to events
using the MVC pattern. For now we will listen to events directly on the buttons.

The Button class extends from the Observable class by using a mixin; therefore, we
can listen to events using the addListener method.

Every component has many predefined events that we can use. If we go through
the documentation, we can see all the available events with a description of when
the event is fired and what parameters are received by the listeners (http://docs.
sencha.com/ext-js/4-1/#!/api/Ext.button.Button). In this case the Button
class contains the click event that is fired when the button is clicked by the user;
we can listen to this event by using the on (a shorthand method for the addListener
method) method.

btn1.on('click',function(){
Ext.Msg.confirm('Confirm','Are you sure you do this?');
});

In the previous code we used the on method to listen to the click event. When this
event is fired, it will show a confirmation message. If we refresh our browser and
click in the first button, we should see the message as follows:

Chapter 5

[151]

We can do whatever we want inside the callback function. In this case we are
only showing a confirmation message, but we could also load a store to pull some
data from our server. We could show a window component or create a panel with
a form inside.

There are many more events that we can listen to, for example the show, hide,
enable, disable, and many more events. We can define any number of listeners to
the same event and when the event is fired all the listeners will be executed.

Adding menus
There are times when we need to create a menu to allow the user to choose from the
available options. We can achieve this by setting the menu property of the buttons.
This will create a floating menu for the selected button that will be shown when the
user clicks the button.

Let's create a button that contains a menu of options. For the following example
we need to create an HTML page, import the Ext JS library, and listen for the DOM
ready event. Inside the callback we should write the following code that creates our
button with three options:

varbtn1 = Ext.create("Ext.button.Button",{
text: 'Payment',
scale: 'large',
iconCls: 'card-icon32',
renderTo: Ext.getBody(),
menu: [{
text: 'Master Card'
},{
text: 'Visa'
},{
text: 'American Express'
}]
});

As we can see in the previous code the menu property receives an array of objects.
This array will be used to create an instance of the Ext.menu.Menu class; this class
is responsible for managing and displaying the floating menu.

Buttons and Toolbars

[152]

It is also important to say that each object inside of the array uses the menu item as
the default xtype. As a result we should see something like the following screenshot
when opening our HTML file in our browser:

In the previous code we use literals to create our menu. If we want to use the
constructors instead of the literals, we should create an instance of the Ext.menu.
Menu and Ext.menu.Item classes as follows:

//Step 1
var menu = Ext.create('Ext.menu.Menu',{
items : [
//Step 2
Ext.create('Ext.menu.Item',{text:'Master card'}),
Ext.create('Ext.menu.Item',{text:'Visa'}),
Ext.create('Ext.menu.Item',{text:'American Express'})
]
});

varbtn2 = Ext.create("Ext.button.Button",{
text: 'Payment',
scale: 'large',
iconCls: 'card-icon32',
renderTo: Ext.getBody(),
menu: menu //Step 3
});

Chapter 5

[153]

In step one, we create an instance of the Menu class and add three instances of the
Item class in step two.

Once we have our menu created we add our instance to the menu property of the
button. When the button is created, it detects that the menu property is not an array
and it's an instance of the Menu class.

As a result we have two buttons with a menu containing the same options as shown
in the following screenshot:

Adding a menu was really easy, now if we want to add some functionality to
those options, we need to set a listener to each item in the menu. If we go to the
documentation, we'll find out that the Ext.menu.Item class contains a click event.
This is the event that we need to listen to perform some actions when it is fired.

So far we have used the on method to set a listener to our components, but in order
to use this method we need to have a reference to the item in the menu. By using the
constructor instead of the literals we can use a variable to hold our reference, but
there are times when we don't have this reference and for these cases we can define
our listeners in a literal way too.

varbtn1 = Ext.create("Ext.button.Button",{
text: 'Payment',
scale: 'large',
iconCls: 'card-icon32',

Buttons and Toolbars

[154]

renderTo: Ext.getBody(),
menu: [{
text: 'Master Card',
listeners : {
click : function(){
document.location = 'http://google.com';
}
}
},{
text: 'Visa',
listeners : {
click : function(){
document.location = 'http://google.com';
}
}
},{
text: 'American Express',
listeners : {
click : function(){
document.location = 'http://google.com';
}
}
}]
});

By using the listeners property in each item we can set all the listeners we need
for our new components. These listeners will be assigned just when the component
is created.

In the previous code the listeners property receives an object. This object defines
the event that we want to listen to, in this case the click event. Every event receives
a function to be executed when the event is fired.

In this case all of the items will redirect the user to google.com when clicked, but in
here we can do anything we need inside the callback functions.

We can also add a second level menu. We only need to define the menu property
in one of the items in our original menu; this will create a second menu inside the
given option.

varbtn1 = Ext.create("Ext.button.Button",{
text: 'Payment',
scale: 'large',
iconCls: 'card-icon32',
renderTo: Ext.getBody(),
menu: [{
text: 'Master Card',

Chapter 5

[155]

menu: [{
text: 'Submenu 1'
},{
text : 'Submenu 2'
}],
listeners : {
click : function(){
document.location = 'http://google.com';
}
}
},
.
.
.
});

We can add as many levels of submenus as we need, however I wouldn't recommend
cascading your menus too deeply because the user experience will be affected:

Buttons and Toolbars

[156]

Toolbars
Now we know how to create buttons and menus, so let's keep moving to the next
component in our journey of learning Ext JS. It is very common in applications to
have many buttons in the same module. In these cases the toolbar component is
very handy because we can arrange our buttons the way we need. We can also set
the position of our toolbar inside of a panel, window, or any other component that
extends from the panel.

In Ext 4 the toolbar component has been redesigned completely. Now it's possible to
define a toolbar in any of the four sides of our containers. We can also add more than
one toolbar to each side.

Let's start by creating a simple toolbar in the top of a panel. First we need to create
an HTML file, import the Ext library, and in the DOM ready callback we're going to
write the following code:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Toolbar</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript">
Ext.onReady(function(){

Ext.create('Ext.panel.Panel',{
title: 'My first toolbar',
width: 300,
height: 200,
dockedItems : [{ //Step 1
xtype : 'toolbar',
docked: 'top', //Step 2
items : [{text:'Save'}]
}],
renderTo: Ext.getBody()
});

});
</script>

Chapter 5

[157]

<style type="text/css">
body{padding:50px;}
</style>
</head>
<body>
</body>
</html>

Using the dockedItems property we can define an array of components. Any
component can be placed on any of the four sides of the panel. In this case we are
using a toolbar and as shown in step two we used the docked property to set the side
of where we would like to place our toolbar. We can also set the component to the
left, right, and bottom. By default it is placed to the top.

We usually define toolbars as docked items, but in fact we can define a grid, form, or
any other component:

One more thing to highlight from the previous code is that by default the
components on the items array of the toolbar are buttons. That's why we didn't set
explicitly an xtype. We can also add any other component to the toolbar, such as a
textfield, combo, and radiobuttons.

Buttons and Toolbars

[158]

Let's add a few more buttons with beautiful icons as shown in the following code:

Ext.create('Ext.panel.Panel',{
.
.
.
dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [
{text:'New',iconCls:'new-icon16'},
{text:'Save',iconCls:'save-icon16'},
{text:'Remove',iconCls:'remove-icon16'},
{text:'Export',iconCls:'export-icon16'},
{text:'Print',iconCls:'print-icon16'}
]
}],
.
.
.
});

Once we have our buttons configured correctly we need to create the CSS classes
that will set an image as a background. Let's add the following code to our HTML
document inside of a style tag:

<style type="text/css">
.new-icon16{
background:transparenturl(images/page_add.png) center 0 no-repeat
!important;
}
.save-icon16{
background:transparenturl(images/disk16.png) center 0 no-repeat
!important;
}
.remove-icon16{
background:transparenturl(images/delete16.png) center 0 no-repeat
!important;
}
.export-icon16{
background:transparenturl(images/page_go.png) center 0 no-repeat
!important;
}
.print-icon16{
background:transparenturl(images/printer.png) center 0 no-repeat
!important;
}
</style>

Chapter 5

[159]

Again, you need to find your own images and set the correct path to each CSS rule:

The previous screenshot shows the new buttons with an icon. By default the icons
are horizontally aligned, but we can arrange them in groups. For example, we can
create a group for the new, save, and remove buttons and another group for the
export and print buttons.

Ext.create('Ext.panel.Panel',{
.
 .
 .
dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [{
xtype : 'buttongroup',
title : 'Actions',
items : [
{text:'New',iconCls:'new-icon16'},
{text:'Save',iconCls:'save-icon16'},
{text:'Remove',iconCls:'remove-icon16'}
]
},{

Buttons and Toolbars

[160]

xtype : 'buttongroup',
title : 'Print & Export',
items : [
{text:'Export',iconCls:'export-icon16'},
{text:'Print',iconCls:'print-icon16'}
]
}
]
}],
renderTo: Ext.getBody()
});

Instead of adding the buttons directly to the toolbar, we added two buttongroup
components; using a group of buttons we can define a title and the buttons that will
be in each group. The following screenshot shows the result of the previous code:

Chapter 5

[161]

It's important to mention that the xtype buttongroup represents the
Ext.container.ButtonGroup class. If we take a look in the documentation
(http://docs.sencha.com/ext-js/4-1/#!/api/Ext.container.ButtonGroup)
for this class, we can see that we can set columns of buttons.

Ext.create('Ext.panel.Panel',{
.
 .
 .
dockedItems : [{
 .
 .
items : [{
xtype : 'buttongroup',
title : 'Actions',
columns: 2,
items : [
{text:'New',iconCls:'new-icon32',scale:'large',rowspan:2,iconAlign:'t
op',width:50},
{text:'Save',iconCls:'save-icon16'},
{text:'Remove',iconCls:'remove-icon16'}
]
},{
xtype : 'buttongroup',
title : 'Print & Export',
defaults:{iconAlign:'top',scale:'large',width:50},
items : [
{text:'Export',iconCls:'export-icon32'},
{text:'Print',iconCls:'print-icon32'}
]
}
]
}],
renderTo: Ext.getBody()
});

In the previous code we have set the columns property to 2. This means that all the
buttons that we create should be rendered in only two columns. One important thing
to observe closely is the rowspan property from the save button. This property is set
to 2, which means that the save button will use two rows. We have also modified the
size of the button to large and we have updated the icon with a 32 x 32 image.

.new-icon32{
background:transparenturl(images/page_add32.png) center 0 no-repeat
!important;
}

Buttons and Toolbars

[162]

With these few changes in place we'll have a better layout and organized
buttons, giving the final user interface a very elegant look and feel as shown
in the following screenshot:

We can use as many columns as we want and as we did in our previous example we
can mix button sizes too.

The main menu for our application
At this point we are in a position to create the main menu for our final application.
If you remember in Chapter 1, The Basics, we defined several wireframes for our final
application. We haven't worked so much in this application yet, mainly because we
have been learning the basics about the Ext framework, but from now on we can
focus more on our final product.

Chapter 5

[163]

The following screenshot shows how we need to do the main menu for our invoice
management application:

As we can see from the screenshot, we need to create a toolbar docked to the
top, then we need to add a button with a menu, we already know how to achieve
this. However, we need a component to take all the available space in the browser.
So far we have been using panels as containers, but this time we are going to use
a Viewport.

The Ext.container.Viewport component takes all the available space and is
always listening to the resize event of the window's browser to recalculate the new
dimensions every time the user resizes the browser.

Let's start by creating a class that extends from the Viewport class. Just remember
that we need to create the file inside the view folder in the application directory.

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

layout : 'fit',
initComponent : function(){

this.callParent();
 }
});

Buttons and Toolbars

[164]

The Viewport class extends from the container component, which means that we
can use any of the available layouts. In this case we are going to use a fit layout
because we want to expand the children of the viewport.

As mentioned before if we want to dock a component to any of the four sides, we need
to use a panel. The following code adds an empty panel to the viewport as a child:

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

layout: 'fit',

initComponent : function(){
var me = this;

me.items = [{
xtype : 'panel'
 }];

me.callParent();
 }
});

We are using the fit layout to expand the panel to fit all the viewport, now we can
set the docked items for this empty panel and dock a toolbar to the top.

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

layout: 'fit',

initComponent : function(){
var me = this;

me.items = [{
xtype : 'panel',
dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [{
text : 'Start',
iconCls : 'home-icon16'
}]
}]

Chapter 5

[165]

 }];
me.callParent();
 }
});

As a result, we have our toolbar with a button in it. Let's make sure we define the
CSS class to an addan icon. If we want to test our application we need to create an
HTML file, import the Ext library, and our viewport class as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Invoice app</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript" src="js/MyApp/view/Viewport.js"></
script>

<script type="text/javascript">
Ext.onReady(function(){

Ext.create("MyApp.view.Viewport");

});
</script>
<style type="text/css">
.home-icon16{
background:transparenturl(images/house.png) center 0 no-repeat
!important;
}
</style>
</head>
<body>
</body>
</html>

Buttons and Toolbars

[166]

For now we are just creating an instance of our viewport class when the DOM is
ready, but as we keep moving forward we're going to change this:

Once we have our start button in place we need to define the menu, we already
know how to do this. We just need to set the menu property with the needed options.

Ext.define('MyApp.view.Viewport',{
 .
 .
 .
initComponent : function(){
var me = this;

me.items = [{
xtype : 'panel',
dockedItems : [{
.
 .
 .
items : [{
text : 'Start',
iconCls : 'home-icon16',
menu: [
{text:'Clients',iconCls:'clients-icon16'},
{text:'Invoices',iconCls:'invoices-icon16'},
{text:'Categories',iconCls:'categories-icon16'}
]

Chapter 5

[167]

}]
}]
 }];

me.callParent();
 }
});

For now we are setting three options in our main menu. Each option should open the
corresponding module. We're going to work on the modules as we learn about the
needed components; so far our application is looking like the following screenshot:

Please make sure you have the needed icons for this example, you can use your own
images by changing the path of the CSS definitions.

The last requirement in our wireframes is to add the name of the logged user in the
right-hand side of the toolbar. Just for now we are going to hard-code the name of
the user, but later we should get the name from the server using Ajax.

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

layout: 'fit',

Buttons and Toolbars

[168]

initComponent : function(){
var me = this;

me.items = [{
xtype : 'panel',
dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [{
text : 'Start',
.
 .
 .
},{
xtype: 'tbfill'
},{
text : 'John Doe',
icon : 'images/user_suit.png'
}]
}]
 }];

me.callParent();
 }
});

The previous code shows two important concepts. First we are using a tbfill xtype,
which is an alias for the Ext.toolbar.Fill class. We are using this class to fill
the space between the two buttons, allowing us to align to the right-hand side the
button for the user name. It's important to understand that this class will push all the
components to the right-hand side. In this case we have only one button, but we can
have any number of components and all of them will be aligned to the right-hand
side. Even if we resize the toolbar, the space will be resized accordingly.

We can also use an arrow (->) to create an instance of the Fill class. The -> symbol
is basically a shorthand version of the Fill class. The following code is the same as
our previous code:

Ext.define('MyApp.view.Viewport',{
 .
 .
 .
initComponent : function(){
var me = this;

me.items = [{
.
 .
 .

Chapter 5

[169]

dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [{
text : 'Start',
.
 .
 .
},
 '->',
 {
text : 'John Doe',
icon : 'images/user_suit.png'
}]
}]
 }];

me.callParent();
 }
});

Using the arrow(->) symbol is a very common practice
in the Ext community, but it's worth knowing the real
class that is doing the job of filling the available space.

If we refresh our browser we can see the same result in both examples:

Buttons and Toolbars

[170]

If you noticed in the previous examples, we are using the icon property inside a
button definition. In this case we are not using a CSS class, instead we are using a
path to the image. This is a common way when we need to add dynamic images
to buttons. In this example the image should be the user's avatar, this is a perfect
example of when we should use the iconCls or icon properties.

The following code shows the complete Viewport class that we have been writing in
the previous steps, but it is provided here in case you would like to copy and paste it:

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

layout: 'fit',

initComponent : function(){
var me = this;

me.items = [{
xtype : 'panel',
dockedItems : [{
xtype : 'toolbar',
docked: 'top',
items : [{
text : 'Start',
iconCls : 'home-icon16',
menu: [
{text:'Clients',iconCls:'clients-icon16'},
{text:'Invoices',iconCls:'invoices-icon16'},
{text:'Categories',iconCls:'categories-icon16'}
]
},{
xtype: 'tbfill'
},{
text : 'John Doe',
icon : 'images/user_suit.png'
}]
}]
 }];

me.callParent();
 }
});

Chapter 5

[171]

The complete HTML code to test our Viewport class looks as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Invoice app</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript" src="js/MyApp/view/Viewport.js"></
script>

<script type="text/javascript">
Ext.onReady(function(){

Ext.create("MyApp.view.Viewport");

});
</script>
<style type="text/css">
body{padding:10px;}
.home-icon16{
background:transparenturl(images/house.png) center 0 no-repeat
!important;
}
.clients-icon16{
background:transparenturl(images/user_green.png) center 0 no-repeat
!important;
}
.invoices-icon16{
background:transparenturl(images/table_money.png) center 0 no-repeat
!important;
}
.categories-icon16{
background:transparenturl(images/application_view_icons.png) center 0
no-repeat !important;
}
</style>
</head>
<body>
</body>
</html>

Buttons and Toolbars

[172]

Summary
In this chapter we learned about events and how we can add, fire, and listen to
events. We also learned about buttons, menus, and toolbars. At the end we worked
in the main layout of our application, but we didn't listen to our events. At this point
we could use the addListener or on methods to add some actions when the buttons
and options are clicked, but in the next chapters we are going to learn about how to
listen for events in a more convenient way.

Doing it with Forms
Ext JS comes with powerful widgets to collect and edit data; we have the form
component and many types of input widgets. These include textfields, textarea,
radios, checkbox, combos, sliders, and many more.

In this chapter we are going to learn about the components we can use to collect data
from our users. Also we are going to be working on our final application as well as
creating the required forms in the wireframes we defined in Chapter 1, The Basics.

We are going to cover the following topics in this chapter:

• The form component
• The available field types
• Field container
• Submitting the data

The form component
In order to collect and handle data Ext comes with the Ext.form.Panel class. This
class extends from the panel so we can place the form in any other container. We also
have all the functionality the panel offers, such as adding a title and using layouts.

Doing it with Forms

[174]

If we look at the wireframes, we can see that we need to have the functionality of
creating, editing, and deleting clients from our database:

We are going to work on this form. As seen in the previous screenshot the form
contains a title, a toolbar with some buttons, and a few fields.

One important thing to keep in mind when working with Ext JS
is that we should create our components isolated from the other
components as much as we can. This way we can reuse them in
other modules or even extend them to add new functionality.

First we need to extend from the Form class, so let's create a JavaScript file with the
following code:

Ext.define('MyApp.view.clients.Form',{
extend : 'Ext.form.Panel',
alias : 'widget.clientform',

title : 'Client form',

Chapter 6

[175]

initComponent : function(){
var me = this;

me.callParent();
 }
});

Please keep in mind the conventions defined in Chapter 2, The Core Concepts, when
creating classes. We need to create the file in the following path:

MyApp/view/clients/Form.js

The previous code doesn't do much, it's only extending from the form panel,
defining an alias and a title. The initComponent method is empty, but we're going to
create some components for it.

Now let's create an HTML file, where we can test our new class. We need to import
the Ext JS library, our JS file, where our new class is, and wait for the DOM ready
event to create an instance of our class:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Texfield</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../ext-4.1.1a-gpl/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../ext-4.1.1a-gpl/resources/css/ext-all.
css" />

<script type="text/javascript" src="MyApp/view/clients/Form.js"></
script>

 <script type="text/javascript">
Ext.onReady(function(){

 Ext.create('MyApp.view.clients.Form',{
 width : 300,
 height : 200,
 renderTo: Ext.getBody()
 });

Doing it with Forms

[176]

});
 </script>
 <style type="text/css">
 body{padding:10px;}
 </style>
</head>
<body>
</body>
</html>

We are creating an instance of the Client form as usual. We have set the width,
height, and the place where the form is going to be rendered, in this case the
body of our document. As a result we have our form created as shown in the
following screenshot:

So far we have an empty form. We can add any of the available components and
widgets, let's start with the textfield property:

Ext.define('MyApp.view.clients.Form',{
extend : 'Ext.form.Panel',
alias : 'widget.clientform',

title : 'Client form',
bodyPadding : 5,
defaultType : 'textfield', //Step 1

Chapter 6

[177]

initComponent : function(){
var me = this;

me.items = me.buildItems(); //Step 2

me.callParent();
 },

buildItems : function(){ //Step 3
return [{
fieldLabel : 'Name',
name : 'name'
 },{
fieldLabel : 'Contact',
name : 'contact'
 }];
 }
});

The steps are explained as follows:

• Step 1: We have defined the default type of component we are going to use.
This way we don't have to define the xtype property every time we want to
create textfield.

• Step 2: We use the items property to add components to our form. We are
calling a function that should return an array of components.

• Step 3: We are defining two textfields. First we set the value of the label for
each textfield and then we set name. It's important to use name if we want to
send or retrieve data to our server. Setting the name property will allow us to
set and retrieve data to our fields in an easy way.

Using a function to define the items array is a great way
to write our code for readability. Also if we would like to
extend this class, we can override this method and add
more components to our form in the subclass.

Doing it with Forms

[178]

With the previous lines of code we have added two textfields to our form as shown
in the following screenshot:

Now let's add the Address field to our form using a textarea property. In order to
do that we need to override the default xtype property as follows:

Ext.define('MyApp.view.clients.Form',{
 //...

buildItems : function(){
return [
 //...
,{
 xtype : 'textarea',
 fieldLabel : 'Address',
 name : 'address'
}
];
}
});

If we want to define new components we can override the xtype property with the
component we need. In this case we are using a textarea xtype, but we can use any
of the available components.

Chapter 6

[179]

The last field in our wireframe is a textfield to collect the phone number. We already
defined the default xtype as textfield so we only need to define the name and the
label of our new textfield as follows:

Ext.define('MyApp.view.clients.Form',{
 //...

buildItems : function(){
return [
//...
,{
fieldLabel : 'Phone',
name : 'phone'
 }
];
 }
});

As a result we have all the required fields in our form. Now if we refresh our
browser, we should see something like the following screenshot:

We have our form ready, but if we see our wireframe we can realize that something
is missing. We need to add three buttons to the top of the panel.

Doing it with Forms

[180]

We already know how to create toolbars and buttons; the following code should be
familiar for us:

Ext.define('MyApp.view.clients.Form',{

 //...

initComponent : function(){
var me = this;

me.items = me.buildItems();

me.dockedItems = me.buildToolbars(); //Step 1

me.callParent();
 },

buildItems : function(){
 //...
 },

buildToolbars : function(){ //Step 2
return [{
xtype : 'toolbar',
docked : 'top',
items : [{
text : 'New',
iconCls : 'new-icon'
 },{
text : 'Save',
iconCls : 'save-icon'
 },{
text : 'Delete',
iconCls : 'delete-icon'
 }]
 }];
 }
});

In the previous code, we are defining the dockedItems property; we are using the
same pattern of defining a function that returns the array of items in the first step.

In the second step we define a function that returns an array of components to be
docked. In this case we are only returning a toolbar docked to the top; this toolbar
contains three buttons. The first button is for a new client, the second one is to save
the current client, and the third button is to delete the current client in the form.

Chapter 6

[181]

As mentioned in Chapter 5, Buttons and Toolbars, we need to use CSS classes to add an
icon to the buttons. The previous code is using three different classes so we need to
create them:

<style type="text/css">
.new-icon{background:transparent url(images/page_add.png) 0 0 no-
repeat !important;}
.save-icon{background:transparent url(images/disk.png) 0 0 no-repeat
!important;}
.delete-icon{background:transparent url(images/delete.png) 0 0 no-
repeat !important;}
</style>

Once we have defined our CSS classes let's refresh our browser and see our latest
changes in action:

We have finished our wireframe, but the form is not doing anything yet. We will
add the functionality in the next chapters when we integrate everything using the
MVC pattern. For now let's just move forward and see what other components we
have available.

Doing it with Forms

[182]

Anatomy of the fields
Ext JS provides many components to give the user a great experience when using
their applications. The following fields are components we can use in a form or
outside of the form, for example, we can add a textfield or a combobox to a toolbar,
where we place some filters or search options.

Every input field extends from the Ext.Component class; this means that every field
has its own lifecycle, events, and also can be placed on any container.

There's also a class called Ext.form.field.Base that defines common properties,
methods, and events across all form fields. This base class also extends from the Ext.
form.Labelable and Ext.form.field.Field classes (using mixins).

The Labelable class gives the field the ability to display a label and errors in every
subclass such as textfields, combos, and so on.

The Field class gives the fields the ability to manage their value, because it adds
a few important methods, such as the getValue and setValue methods to set and
retrieve the current value of the field; also this class introduces an important concept,
the raw value.

A great example of the raw value is when we pull data from our server and we
get a date value in string format, the raw value is in plain text, but the value of the
date field should be in a native Date object so that we can work easily with dates
and time. We can always use the raw value, but it's recommended to use the value
instead, which in this example is a Date object.

Available fields
Ext JS provides many widgets that we can use to collect and edit data in our forms.
We are going to learn about the most useful widget and configurations that we can
use to create beautiful forms.

For the following examples we are going to create a class that extends from the Form
class and hold the fields that we are going to explain in detail later on:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',
alias : 'widget.availablefields',

title : 'Available fields',
 width : 280,
 bodyPadding : 5,

Chapter 6

[183]

 initComponent : function(){
 var me = this;

 me.items = me.buildItems();

 me.callParent();
 },

 buildItems : function(){
 //We are going to create the fields here
 return []
 }
});

In the buildItem form we are going to instantiate the required classes.

The Textfield class
We have already used this class to create our wireframe and we used the xtype
property to create it. We can always create the instance using the Ext.create
method and the class that we should instantiate is Ext.form.field.Text.

This class extends from the base class and is intended to manage text as a string value.
This class defines some important events such as keydown, keypress, and keyup.
These events are very useful to catch the keys the user is entering into a textfield.

It's important to keep in mind that if we want to use these events, we need to set the
enableKeyEvents property as true.

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){
 //Step 1
var txt = Ext.create('Ext.form.field.Text',{
 fieldLabel : 'First name',
 name : 'firstname',
 enableKeyEvents : true
 });

Doing it with Forms

[184]

 //Step 2
 txt.on('keyup',function(field,event,options){
 if(event.getCharCode() === event.ENTER){
 Ext.Msg.alert('Alert','Welcome: '+field.getValue());
 }
 });

 return [txt];
 }
});

In the first step we create a textfield component. We define some properties, such as
the name and the label of the field and enable the key events.

In the second step we are setting a listener to the keyup event. Every time the user
releases a key on his keyboard the callback function will be executed. In the previous
example we are waiting for the Enter key and whenever it is pressed we show an
alert message with the value entered into the textfield.

Ext JS provides a wrapper for the native event object. This
wrapper defines many constants such as the Enter key. We
can see all the available constants on the documentation
at http://docs.sencha.com/ext-js/4-1/#!/api/
Ext.EventObject.

Let's test our code in a new HTML page as follows:

<!DOCTYPE html>
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
<title>Texfield</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.1a-glp/ext-all-dev.
js"></script>
<linkrel="stylesheet" href="../extjs-4.1.1a-glp/resources/css/ext-all.
css" />

 <!-- Importing our custom class -->
<script type="text/javascript" src="MyApp/view/AvailableFields"></
script>

 <script type="text/javascript">
Ext.onReady(function(){

Chapter 6

[185]

 Ext.create('MyApp.view.AvailableFields',{
 renderTo : Ext.getBody()
 });
});
 </script>
 <style type="text/css">
 body{padding:10px;}
 </style>
</head>
<body>
</body>
</html>

The following screenshot shows how our Textfield is working with the
listener attached:

As we can see in the previous example all the fields extend from the Observable
class, therefore we are able to add events and listeners to all form fields.

We should take a look at the documentation to see all the available events that we
can use to our advantage.

The number field
When dealing with numbers we can use the number field that only accepts numbers
as a value. This way we can assure that the user will not be able to introduce any
invalid characters.

Doing it with Forms

[186]

Let's add the following code to the buildItems method to see how the number
field works:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 //Step 1
 var num = Ext.create('Ext.form.field.Number',{
 fieldLabel : 'Price',
 name : 'price'
 });

 return [txt,num]; //Step 2
 }
});

In the first step we create the instance. We are only assigning the label and the name
of our field. There are many more options, but for now we are only using these two.

In the second step the field is added to the returning array that will be added to the
items of the form.

As a result we will have something as shown in the following screenshot:

Chapter 6

[187]

As we can see in the previous screenshot the number field contains two arrows or
spinners. If the user clicks on them, the value will increase or decrease accordingly.

By default the value is incremented or decremented by one, but we can control that
by setting the step configuration as follows:

 //...

 var num = Ext.create('Ext.form.field.Number',{
 fieldLabel : 'Price',
 name : 'price',
 step : 10
 });

 //...

Now if we click on the spinners, we will see how they are increased by ten. Another
useful configuration is to set the maximal or minimal value that this field will accept;
we can achieve this by setting the minValue and maxValue configurations as follows:

 //...

 var num = Ext.create('Ext.form.field.Number',{
 fieldLabel : 'Price',
 name : 'price',
 step : 10,
minValue : 30,
 maxValue: 100
 });

 //...

Finally, if we don't want to show the spinners, we can hide them by using the
hideTrigger configuration as follows:

 //...

 var num = Ext.create('Ext.form.field.Number',{
 fieldLabel : 'Price',
 name : 'price',
 step : 10,
minValue : 30,
 maxValue : 100,
hideTrigger : true
 });

 //...

Doing it with Forms

[188]

This way the spinners will not be shown and we will have a textfield with the ability
to accept only numbers.

There are many more configurations for this field, such as the ability to change the
decimal separator so only numbers without decimals will be allowed and many
more options that we can use to our advantage.

Even if we accept only numbers in our textfield, we should
always run the validations in the server side, never rely only
on the client side.

The combobox field
The combobox is one of the most useful widgets to display a list of options. This is a
very flexible component that we can customize to our needs.

Let's start with the basics! First we need to rely on the data package that we have
already learned earlier in this book. We are going to use the Store class with a local
data to fill our combobox.

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 //Step 1
 var store = Ext.create('Ext.data.Store',{
 fields : ['key','label'],
 data : [
 {key:'xs',label:'Extra Small'},
 {key:'s',label:'Small'},
 {key:'m',label:'Medium'},
 {key:'l',label:'Large'},
 {key:'xl',label:'Extra Large'}
]
 });

Chapter 6

[189]

 //Step 2
varcombobox = Ext.create('Ext.form.ComboBox',{
 fieldLabel : 'Size',
 name : 'size',
 store : store,
 queryMode : 'local',
 displayField: 'label',
 valueField : 'key'
 });

 return [txt,num,combobox]; //Step 3
 }
});

In the first step we are creating a store with a static data. By defining the fields
property the store internally creates the model to be used with this store.

In the second step we create our combobox. We are defining the name and the label
as any other fields, but there are some specific configurations that are required for the
combobox in order to work properly. First we set the store that the combobox will use
to display the data. Then we need to set the queryMode property to local, by doing
this the combobox will not try to load the data of the store remotely when the list of
options is displayed. After that we need to define which of the properties in the store
will be used for displaying the label in the list of options and which will be used as a
value; we use the displayField and valueField properties to specify this.

The last step is to append our combobox to the returning array of fields that will be
added to our form.

The following screenshot shows the result of our code:

Doing it with Forms

[190]

Since we are using a store to hold the displayed data we can use an Ajax proxy to get
the content of the store from our server.

Let's modify our previous example to get all the available sizes from our server side.
First we need to create the service that will return the data; in this case we are going
to use a static data, but this data can be stored in a database or somewhere else.

{
 "success" : true,
 "data" : [
 {"key":"xs","label":"Extra Small"},
 {"key":"s","label":"Small"},
 {"key":"m","label":"Medium"},
 {"key":"l","label":"Large"},
 {"key":"xl","label":"Extra Large"}
]
}

The previous code should be located in a new file at serverside/size.json or
anywhere else where you can make an Ajax request.

Once we have defined the source of data we need to perform some changes in our
code as follows:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

//...

 buildItems : function(){

 //...

 var store = Ext.create('Ext.data.Store',{
 fields : ['key','label'],
 autoLoad: true,
 proxy : {
 type : 'ajax',
 url : 'serverside/sizes.json',
 reader : {
 type : 'json',
 root : 'data'
 }
 }
 });

 //...
 }
});

Chapter 6

[191]

As you can see we have changed the proxy of the store only. We defined an Ajax
proxy and a JSON reader, now if we refresh our browser, we can see that the data is
loading remotely.

This is one of the greatest advantages of Ext JS. We can change things very easily
because Ext is built with small classes that can be switched at any time. We have seen
how to read data locally and remotely.

At this point the user can type into the combobox and the list that will be displayed
will contain only those records that matche with the current text entered. This is
a very handy feature, but in most cases we want the user to select only one of the
available options and not enter some invalid text. We can use the forceSelection
property to force the user to select only one option even if he/she starts typing text
into the field:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 varcombobox = Ext.create('Ext.form.ComboBox',{
 fieldLabel : 'Size',
 name : 'size',
 store : store,
 queryMode : 'local',
 displayField: 'label',
 valueField : 'key',
 forceSelection : true
 });
 return [txt,num,combobox];
 }
});

Doing it with Forms

[192]

Now we can be sure that the user is going to select only one of the available options
in the list:

It's very common that we need to do something when an option of the list is selected,
for example load another combo or hide/show some other fields. We can listen to the
select event and perform the required actions:

combobox.on('select',function(combo,records){
 Ext.Msg.alert('Alert',records[0].get('label'));
});

The previous code is listening to the select event, and only shows an alert message
with the label of the record selected. Here we can do whatever we need, such as
loading the data of another combobox depending on the selection of the first.

The callback receives the array of records selected; it's an array because we can also
configure our combobox to allow the user to select more than one option.

We can use any of the available events to perform some actions but one of the most
important events for this widget is the select event.

The date field
Ext provides an easy way to collect dates; we have at our disposal a date picker that
will handle the selection of a date using a fancy calendar or by allowing the user to
type the date in the format we define.

Chapter 6

[193]

The most basic usage is by only setting the name and the label of the field such as the
following code:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 vardatefield = Ext.create('Ext.form.field.Date',{
 fieldLabel : 'Date',
 name : 'date'
 });

 return [txt,num,combobox,datefield];
 }
});

Doing it with Forms

[194]

We are defining our date field in a very simple way, but there are many more
configurations we can use. Let's dig a little bit more to customize these fields to meet
our requirements.

By default the format used to display the date is m/d/Y(05/22/2012); this is a
common format used in the U.S., but not in other countries. To define a custom format
for a different region or country we need to use the format property as follows:

vardatefield = Ext.create('Ext.form.field.Date',{
 fieldLabel : 'Date',
 name : 'date',
 format : 'd/m/Y',
 submitFormat: 'Y-m-dH:m:s'
});

We can use any format to display the date and also we can set the format that we
want the field to be sent, when we submit the form, or retrieved, when we get the
values. Defining the submitFormat property is very important because it's this
format that we will be using under the hood; in this example we are using a common
format in databases.

The m/d/Y format refers to the commonly mm/dd/yyyy
format. This may be confusing, but we should take a look at
the Ext.Date object documentation to see all the supported
formats that we can use at http://docs.sencha.com/
ext-js/4-1/#!/api/Ext.Date.

Right now the user is able to type into the field to enter the date in the correct format,
however using slashes may slow down the user. We can allow alternative formats to
make things easier for the user, for example we could define d m Y as a valid format
and as many formats as needed:

vardatefield = Ext.create('Ext.form.field.Date',{
 fieldLabel : 'Date',
 name : 'date',
 format : 'd/m/Y',
 submitFormat: 'Y-m-d H:m:s',
 altFormats : 'd-m-Y|d m Y|d.m.Y'
});

Using the altFormats property we can define all the formats we want. We only
need to separate each format by a pipe character (|) and those formats will be used
to parse the text to a date object. We should not use the pipe inside any of the format
because there is no way to escape this character. A format like m|d|Y will not work.

Chapter 6

[195]

We have many more properties available, such as minValue and maxValue, the
ability to disable some specific dates such as weekends or holidays:

vardatefield = Ext.create('Ext.form.field.Date',{
 fieldLabel : 'Date',
 name : 'date',
 format : 'd/m/Y',
 submitFormat: 'Y-m-d H:m:s',
 altFormats : 'd-m-Y|d m Y|d.m.Y',
 minValue : new Date(),
 disabledDates: ['30/04/2012','15/05/2012']
});

If we want to disable a range of days, we can use regular expressions to match the
dates that we want to disable. Some examples are as follows:

//disable everyday in march 2012
disabledDates: ['../03/2012']

//disable everyday in march for every year
disabledDates: ['../03/..']

//disable the 05 and 21 of march for every year
disabledDates: ['05/03','21/03']

Doing it with Forms

[196]

We can also use the select event that is fired when the user selects a date. We can
do whatever we need inside the callback function as we did in the combobox.

The checkbox
We can use a single checkbox to set a record in our database as active or inactive, or
maybe we can have a group of options that we need to display and allow the user to
select a few of them:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 //Step 1
varchkbox = Ext.create('Ext.form.field.Checkbox',{
 fieldLabel : ' ',
 labelSeparator : '',
 boxLabel : 'Active',
 name : 'active'
 });

 return [
txt,
num,
combobox,
datefield,
chkbox //Step 2
];
 }
});

In the first step we are creating our checkbox. We are using the boxLabel property
to set the label of our checkbox; it's important to know that we are setting the
fieldLabel and labelSeparator properties as an empty space. This way the
checkbox will be aligned correctly.

Chapter 6

[197]

In the last step we just add our new component to the returned array. The following
screenshot shows our latest changes to the code:

Now we have our checkbox in place. Having a single checkbox is great, but there are
times when we need to define a few more options. We can use a group of checkboxes
to arrange the components horizontally, vertically, or in columns:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 //Step 1
 var group = Ext.create('Ext.form.CheckboxGroup',{
 fieldLabel : 'Languages',
 columns : 2,
 items : [
 {name:'lan',boxLabel:'JavaScript',inputValue:'js'},
 {name:'lan',boxLabel:'C/C++',inputValue:'c/cpp'},
 {name:'lan',boxLabel:'Java',inputValue:'java'},
 {name:'lan',boxLabel:'PHP',inputValue:'php'},
 {name:'lan',boxLabel:'SQL',inputValue:'sql'},

Doing it with Forms

[198]

 {name:'lan',boxLabel:'Python',inputValue:'py'},
 {name:'lan',boxLabel:'Ruby',inputValue:'rb'}
]
 });

 return [txt,num,combobox,datefield,chkbox,group];
 }
});

In the first step we are creating an instance of the CheckboxGroup class. We defined
the label of the group and gave each item a checkbox with its label and value. We are
arranging the items in two columns.

In the last step we added the group to the returning array so it appears in our form:

The radio button
Radio buttons are useful when we want to force the user to select one item from a
small group of choices. If we want to present more choices, a combobox is an easier
widget to code and to use.

Chapter 6

[199]

The radio button is very similar to the checkbox. In fact the radio button extends
from the Checkbox class. This means the radio buttons also have the same properties
and methods as the checkbox.

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 var yes = Ext.create('Ext.form.field.Radio',{
 name : 'option',
 fieldLabel : 'Are you a developer?',
 labelSeparator : '',
 boxLabel: 'Yes',
 inputValue : true
 }),
 no = Ext.create('Ext.form.field.Radio',{
 name : 'option',
 fieldLabel : ' ',
 labelSeparator : '',
 boxLabel: 'No',
 inputValue : false
 });

 return [txt,num,combobox,datefield,chkbox,group,yes,no];
 }
});

We are creating two instances of the Radio class exactly the same as we created the
Checkbox class. In the creation of the Checkbox class we added two radio buttons to
the returning array.

Doing it with Forms

[200]

The following screenshot shows how the two radios were created:

It is important to assign the same name to the radio buttons so that only one option
can be selected among the available ones.

As we can see in the previous screenshot the radios are arranged one over the
other, but what if we want to align them horizontally? We can use a radiogroup
component and set the number of columns as two. That way we will have our two
radio buttons in the same line:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

Chapter 6

[201]

 var radiogroup = {
 xtype : 'radiogroup',
 columns : 2,
 fieldLabel: 'Are you a developer?',
 items : [yes,no]
 };

 return [txt,num,combobox,datefield,chkbox,group,radiogroup];
 }
});

This is very similar to what we did with the checkbox group. We can define as many
radio buttons as we need, and all of them will be arranged in two columns as shown
in the following screenshot:

The field container
There are times when we need to group textfields or any other components other than
checkbox and radio buttons. We can use the field container to group any type of field.

One of the advantages of using a field container is the ability to use a layout; we can
use any of the available layouts in the framework. We have learned about the layouts
in the previous chapters.

Doing it with Forms

[202]

The following code shows how we can group a textfield and a combobox to show
these fields in the same line. We need to edit our previous code to add a few
configurations to the price and size fields:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 buildItems : function(){

 //...

 //Step 1
 var num = Ext.create('Ext.form.field.Number',{
 emptyText : 'Price',
 name : 'price',
 step : 10,
 minValue : 30,
 maxValue : 100,
 flex : 1,
 margins : '0 5 0 0'
 //hideTrigger : true
 });

 //...

 //Step 1
 varcombobox = Ext.create('Ext.form.ComboBox',{
 emptyText : 'Size',
 name : 'size',
 store : store,
 queryMode : 'local',
 displayField: 'label',
 valueField : 'key',
 forceSelection : true,
 flex : 1
 });

 //...

 //Step 2
 varpricesize = {
 xtype : 'fieldcontainer',

Chapter 6

[203]

 fieldLabel : 'Price/Size',
 layout : 'hbox',
 items : [num,combobox]
 };

 return [txt, pricesize //Step 3
,datefield,chkbox,group,container];
 }
});

In the first step we have removed the fieldLabel property and instead we defined
the emptyText property, this way the label will be shown only when the field is
empty. Also we have defined the flex property to make it flexible.

In the second step we created the field container with an hbox layout. This way the
two fields will be flexible and grouped horizontally.

Finally, in the third step we removed the price and the size from the array and added
the group. The following screenshot shows the changes in our code:

This is how we can arrange the fields in any way we want; using the field container
is a great way to accomplish this task.

We can add as many components as we need, we can use any of the available
layouts, the possibilities are endless.

Doing it with Forms

[204]

Submitting the data
So far we have learned how to create and configure the components to collect data
using the available widgets, but we need to do something with it. Ext JS provides
different ways to submit the captured data to our server.

The Ext.form.Panel class contains an instance of the Ext.form.Basic class. This
class is used to manage the data within the form, such as validations, settings and
retrieving data to the fields, submitting and loading data from the server, and so on.

In order to send the data to the server we can use the submit method from the basic
form. Let's add a button to our form and then submit the entered data to our server:

Ext.define('MyApp.view.AvailableFields',{
extend : 'Ext.form.Panel',

 //...

 initComponent : function(){
 var me = this;

 me.items = me.buildItems();
 //Step 1
 me.tbar = [{text:'Save',handler:me.saveData,scope:me}];

 me.callParent();
 },

 buildItems : function(){

 //...

 },

 //Step 2
 saveData : function(){
 var me = this;

 me.getForm().submit({
 url : 'serverside/save.do',
 success : function(form,action){
 Ext.Msg.alert('Success','Successfully saved');
 },
 failure : function(form,action){
 Ext.Msg.alert('Failure','Something is wrong');
 }
 });
 }
});

Chapter 6

[205]

In the first step we defined a top toolbar with one button on it. When the button is
clicked, the saveData function is executed.

In the second step we defined the saveData function. In this function we get the
basic form and then execute the submit method. This method receives an object with
the URL, where the Ajax request will be made, and the success/failure callback:

Doing it with Forms

[206]

As shown in the previous screenshot the submit method executes an Ajax request
using the POST method and sends all the entered data by the user. The way we get
these parameters on the server side depends on the technology that we are using;
for example if we are using PHP, we can do something like the following code:

<?php

$firstname = $_POST['firstname'];
$price = $_POST['price'];

If we are using Java, we probably would do something like the following code:

String firstname = request.getParameter("firstname");
String size = request.getParameter("size");

This depends on the framework, language, or technology that we use in the server
side; the important thing is that Ext submits the data using the POST method and
each parameter is sent using the name of the field.

The server code provided here is just an example and is not complete. The
implementation of that is out of the scope of this book. However, based on
the received data you can take that information and do whatever you need
to do with it.

Summary
In this chapter we have learned about the forms and fields that we can use to collect
and edit data. We have many options and configurations available that we can use to
customize our forms.

The field container is one of the new components added to Version 4 of the Ext JS
framework. This allows us to arrange the fields using any of the available layouts
in the framework giving us a powerful layout system.

In the following chapter we are going to learn about the grid component. This is one
of the most powerful widgets in the framework because it's very flexible with lots of
plugins and configurations.

Give me the Grid
The grid component is the most popular and used component in the Ext JS library.
It allows us to display, sort, group, and edit data very easily, or at least in a very
common format. Grids are excellent for showing large amounts of tabular data.

In Ext JS 4 the grid panel was completely rewritten. The purpose was to enhance
performance and change the way the component renders data. The result was a set
of classes that boost the application performance.

In this chapter we are going to learn how the grid panel works and what are the
configurations needed to get the best of this component.

The topics we are going to cover in this chapter are as follows:

• The data connection (models and stores)
• A basic grid panel
• Columns
• Renderers
• Selection models
• Grid listeners
• Features
• Plugins

Give me the Grid

[208]

The data connection (models and stores)
The grid panel is the component used to display data, but where does the data come
from? In Chapter 4, It's all about Data, we talked about the data package that comes in
Ext JS 4 and we mentioned the use of models and stores. Like other components, the
grid component uses a store to contain the data it displays. This happens because the
library splits the responsibilities; on one hand the grid panel is only responsible for
displaying data, while the store is responsible for fetching and updating that data. So
let's start by defining the model and the store for our grid panel.

Defining a model for the store of the grid
We are going to define a client model that has the following properties:

• Client ID
• Name
• Last name
• Age
• E-mail
• Country
• Pay date

Now that we have defined the properties of our model, let's write the code to define
it in the grid view definition as shown in the following code:

//The definition of the client model
Ext.define('Client', {
extend:'Ext.data.Model',
fields:[
 'name', 'lastname' , 'email', 'country',
 {name:'client', type:'int'},
 {name:'age', type:'int' },
 {name:'active', type:'boolean' },
 {name:'amount', type:'float' },
 'paydate'
]
});

In the preceding code we have created a Client model that extends from
Ext.data.Model and has all the properties of our client.

Chapter 7

[209]

Defining a store for the grid
Once we have defined our model, we need to define the store for our clients in the
grid view definition as shown in the following code:

//defining the client`s store
Ext.create('Ext.data.Store', {
model:'Client',
data:[
{
 client:1,
 name:'David',
 lastname:'Lee', age:24,
 email:'david@email.com',
 country:'China',
 paydate:'08/08/2012',
 amount:120.5,
 active:true
},{
 client:2,
 name:'Lisa',
 lastname:'Brown',
 age:25,
 email:'lisa@email.com',
 country:'Australia',
 paydate:'08/08/2012',
 amount:120.5, active:false
},{
 client:3,
 name:'Armando',
 lastname:'Gonzalez',
 age:30,
 email:'armando@email.com',
 country:'Mexico',
 paydate:'08/28/2012',
 amount:120.5,
 active:true
},{

Give me the Grid

[210]

 client:4,
 name:'Mike',
 lastname:'Chang',
 age:27,
 email:'mike@email.com',
 country:'Japan',
 paydate:'08/08/2012',
 amount:120.5,
 active:false
},{
 client:5,
 name:'Kevin',
 lastname:'Smith',
 age:28,
 email:'kevin@email.com',
 country:'Usa',
 paydate:'08/08/2012',
 amount:120.5, active:true
}]
});

In the previous code, we have the definition of the store we are going to use to show
the data on our grid. We have defined an inline set of data to simplify our example,
but in a real application you should get the data from the server with the help of
store proxies.

A basic grid panel
Once we have our model and store, we are ready to define the grid that will show
our clients information as shown in the following code:

/**
 * @classMyApp.view.BasicGridPanel
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the basic grid panel definition.
 */
Ext.define('MyApp.view.BasicGridPanel', {
 extend: 'Ext.grid.Panel',

 width:700,
 height:180,
 title:'Clients',

Chapter 7

[211]

 initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();

 this.callParent(arguments);
 },
 createModel:function(){ //The definition of the client model

 },
 buildStore:function(){ //defining the client`s store

 },
 buildColumns : function(){
 return [
 {
 text:'Name',
 width:100,
 dataIndex:'name'
 },{
 text:'Last Name',
 width:100,
 dataIndex:'lastname'
 },{
 text:'Age',
 width:50,
 dataIndex:'age'
 },{
 text:'Email Address',
 width:150,
 dataIndex:'email'
 },{
 text:'Country',
 width:80,
 dataIndex:'country'
 },{
 text:'Pay Date',
 flex:1,
 dataIndex:'paydate'
 },{
 text:'Total',
 flex:1,

Give me the Grid

[212]

 dataIndex:'amount'
 },{
 text:'Active?',
 flex:1,
 dataIndex:'active'
 }];
 }
});

In the preceding code we have created a grid panel that renders itself in the body
of our page. In the store property we have assigned the client store so the grid gets
the data from it to display. We have defined a columns property that is an array of
objects. These objects define the columns of our grid.

We need to create an HTML page to import the Ext library and then wrap our code on
the Ext.onReady function. The result will be as shown in the following screenshot:

The model fields' names have to match with the
column's data index so that the grid renders the
data properly.

Chapter 7

[213]

Columns
The columns property in the grid panel matches the model fields with the columns
of the grid. By default, the columns are sortable and will toggle the sorting direction
between ascending and descending when you click on the column header. Each
column header has a menu that shows up when you click on the right-hand side of
the header. In that menu you can sort data, or show and hide columns of the grid
panel as shown in the following screenshot:

The Ext JS 4 offers six kinds of column classes and all are located under the Ext.
grid.column namespace. We are going to explain how each of these column classes
work by adding an extra configuration to our columns in the grid as shown in the
following code:

columns:[{
 xtype:'rownumberer' //step 1
 },{
 text:'Name',
 xtype:'templatecolumn', //step 2
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})</br>{email}'
 //step 3
 },{

Give me the Grid

[214]

text:'Country',
width:80,
dataIndex:'country'
},{
text:'Pay Date',
xtype:'datecolumn', //step 4
width:80,
dataIndex:'paydate',
format:'m-d-Y'
},{
text:'Total',
xtype:'numbercolumn', //step 5
width:80,
dataIndex:'amount'
},{
text:'Active?',
xtype:'booleancolumn', //step6
width:80,
dataIndex:'active',
trueText:'YES',
falseText:'NO'
},{
xtype:'actioncolumn', //step 7
width:40,
items:[{
 icon:'pencil.png',//step 8
 handler:function () {
 alert('edit');
 }
 },{
 icon:'cross.png',//step9
 handler:function () {
 alert('delete');
 }
 }]
}]

Chapter 7

[215]

The previous column configuration outputs the grid shown in the
following screenshot:

The steps are explained as follows:

• Step 1: We declared the Ext.grid.RowNumberer column by its xtype.
This is the first column of our grid and automatically adds numbers to
our grid rows.

• Step 2: We are using the Ext.grid.column.Template type column.
This type of column renders HTML on our column with the help of
the library templates.

• Step 3: We are displaying the value of three fields of our model on a single
column of our grid. This is achieved by the tpl property of step three.

• Step 4: The fourth column has an Ext.grid.column.Date type defined.
This column class renders a date according to the default locale, or a
preconfigured format property defined in format.

• Step 5: We have an Ext.grid.column.Number type defined for rendering
our total column. This type of column renders numeric data according to a
format string.

• Step 6: The Ext.grid.column.Boolean type that is used to display
boolean data fields. With the trueText and falseText properties we
can define the text to display in each case. In our example we are setting
YES and NO respectively.

Give me the Grid

[216]

• Step 7: We defined an Ext.grid.column.Action type. This type of column
is very useful, because on older versions of the framework we have to make
some tweaks to accomplish this kind of behavior. Now we only have to set
the icon or a series of icons in a grid cell as items of the column and add the
respective handlers for each icon, so we can process icons by clicking on
them individually. In our example we are adding a pencil icon on step eight
and a cross icon on step nine that will perform editing and deleting rows
from our grid respectively.

• Step 8: We added a pencil icon that will edit rows from our grid.
• Step 9: We added a cross icon for deleting rows from our grids.

Now that we have described the grid columns behavior we are ready to learn how
column renderers work.

Columns renderers
The column renderers are a great feature to customize behavior and rendering of
the cells in the grid panel. A renderer is tied to a particular column, where we can
customize the behavior or the styles of a cell. The renderers are methods that are
called for each cell of the column with the following arguments:

• Value: The data value for the current cell.
• Metadata: A collection of metadata of the current cell, typically used to

modify the styles of the cell or row.
• Record: The record of the current row.
• Row index: The index of the current row.
• Column index: The index of the current column.
• Store: The store of our grid.
• View: The current grid view, so we can modify it or refresh it.

Some of the most common renderers are included in Ext.util.Format, like Ext.
util.Format.dateRenderer or Ext.util.Format.usMoney. We can write our own
renderers too, so let's add some renderers to our grid as follows:

columns:[{
 text:'Country',
 width:60,
 dataIndex:'country',
 renderer:function (v) { //step 1
 return '<imgsrc="' + v.toLowerCase() + '.png">';

Chapter 7

[217]

 }
},{
 text:'Total',
 xtype:'numbercolumn',
 width:80,
 dataIndex:'amount',
 renderer: Ext.util.Format.usMoney //step 2
},{
 text:'Active?',
 //xtype:'booleancolumn',//step 3
 width:80,
 dataIndex:'active',
 trueText:'YES',
 falseText:'NO',
 renderer:function(v,m){ //step 4
 var color = v ? 'red' : 'green',
 v = v ? 'YES' : 'NO';
 m.style = 'color:' + color;
 return v;
 }
}]

In the preceding code we have applied renderers to three columns of our grid, let's
describe each one of them:

• Step 1: We added a renderer to display the flag of the country instead of the
text. We have added the icons to the chapter source files.

• Step 2: The renderer Ext.util.Format.usMoney that was added on step two
takes the number value of the column and renders it in U.S. money format.

• Step 3: We commented the xtype property of the column, so we can apply to
it a custom renderer and give format to the YES and NO text.

• Step 4: We did some logic to render a green YES text or a red NO text.

Give me the Grid

[218]

The previous configuration outputs the result shown in the following screenshot:

Selection models
Once we have defined the way we want to display our data, we need the tools
to interact with it. That's where the selection models are needed. The grid panels
use selection models for selecting some part of the grid's data. There are two main
selection models on the framework, the Ext.selection.RowModel model, where an
entire row of the grid is selected, or the Ext.selection.CellModel model, where
individuals cells are selected.

By default, the grid panel uses the row selection model that selects all the rows of
our grid. In our example we are going to use the RowSelectionModel class to get the
record we are going to edit or delete.

{
 xtype:'actioncolumn',
 width:40,
 items:[{
 icon:'pencil.png',
 handler:function (grid, rowIndex, colIndex) {

 varselectionModel= grid.getSelectionModel(),
 record;
 selectionModel.select(rowIndex);
 record = selectionModel.getSelection()[0];
 alert('You are going to edit ' +
 record.get('name'));
 }
},{

Chapter 7

[219]

 icon:'cross.png',
handler:function (grid, rowIndex, colIndex) {
var selectionModel= grid.getSelectionModel(), record;
selectionModel.select(rowIndex);
record = selectionModel.getSelection()[0];
alert('You are going to delete ' + record.get('name'));
 }
 }
]
}

In the previous code we have modified the actioncolumn xtype. First we get
the selection model of the grid (by default it is row selection), then we select
the row, where the icon was clicked with the select method, then we used the
getSelection method to get the selected records, and finally we use a JavaScript
alert function to display a message for editing or deleting the selected record.

The CellSelectionModel class behaves differently from the RowSelectionModel
class. Now when you click on a cell only the cell you clicked on is selected and
the key navigation will move focus from cell to cell. Let's accomplish the same
functionality of the previous example but now with a CellSelectionModel class.

First we have to set the selection type to our grid as shown in the following code:

store:clientStore,
width:600,
selType: 'cellmodel',
height:210,
title:'Clients',

Next, we have to change the following line of the code:

selectionModel.select(rowIndex);

We will replace it with the following code snippet:

selectionModel.setCurrentPosition({
 row: rowIndex,
 column: colIndex
});

Give me the Grid

[220]

The following screenshot is the output of our selection model example:

Grid listeners
The event listener is a core feature in components of the Ext JS library. The grid panel
is not an exception. Because of its nature this panel has a very well designed set of
listeners that will allow us to process all kind of events.

Let's write some code to update our grid information; to achieve this task we are
going to use a form panel.

We have to define the form panel used for editing the grid data as shown in the
following code:

/**
 * @classMyApp.view.Form
 * @extendsExt.form.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the form for the grid listeners example.
 */
Ext.define('MyApp.view.Form', {
 extend:'Ext.form.Panel',
 layout:'anchor',
 title:'client',
 flex:1.5,
 frame:true,
 defaultType:'textfield',
 defaults:{
 allowBlank:false,
 anchor:'100%'
 },

Chapter 7

[221]

items:[{
 fieldLabel:'Name',
 name:'name'
 },{
 fieldLabel:'Last Name',
 name:'lastname'
 },{
 fieldLabel:'Age',
 xtype:'numberfield',
 name:'age'
 },{
 fieldLabel:'Email',
 name:'email',
 vtype:'email'
 },{
 fieldLabel:'Country',
 name:'country',
 xtype:'combobox',
 displayField:'name',
 store:Ext.create('Ext.data.Store', {
 fields:['name'],
 data:[
 {"name":"China"},
 {"name":"Australia"},
 {"name":"Mexico"},
 {"name":"Japan"},
 {"name":"Usa"}
]
 })
},
 {
fieldLabel:'Pay Date',
xtype:'datefield',
name:'paydate'
},
 {
fieldLabel:'Total',
xtype:'numberfield',
name:'amount',
allowDecimals:true
},{

Give me the Grid

[222]

fieldLabel:'Active?',
xtype:'checkbox',
name:'active'
 }
]
});

Then we need to create the form and grid panel, this code goes in the
Ext.onReady method:

var grid = Ext.create('MyApp.view.Grid',{
 listeners:{ //step 1
 itemclick:function (view, record, htmlItem, index,
 eventObject, opts) {
 form.loadRecord(record);
 }
 },
 }),
 form = Ext.create('MyApp.view.Form',{
 buttons:[
 {
 text:'Reset',
 handler:function () {
 this.up('form').getForm().reset();
 }
 },
 {
 text:'Save',
 formBind:true,
 disabled:true,
 scope:this,
 handler:function () {
 varselectionModel = grid.getSelectionModel(), record;
 record = selectionModel.getSelection()[0];
 record.set(form.getValues());//step 2
 grid.getView().refresh();//step 3
 }
 }
]
 });

The steps are explained as follows:

• Step 1: We added the listener to the grid, the itemclick listener. It handles
the event when an item of the grid has been clicked. In our example we are
listening to that event and loading a record to the form panel.

• Step 2: We set the edited values of the form to the grid panel.
• Step 3: We refresh the grid view to see the updated data.

Chapter 7

[223]

Once we have our form and grid defined we are putting them in a Ext.container.
Viewport property so we can display them properly as shown in the following code:

Ext.create('Ext.container.Viewport', {
 layout:{
 type:'hbox',
 align:'stretch'
 },
 items:[grid, form]
});

In the previous code, we add our grid and form to the viewport; the result is the
output shown in the following screenshot:

Features
The Ext.grid.Feature class is a new class included in Ext JS 4 designed for creating
optional grid features. In older versions of the framework plugins were one way
of adding custom functionality to grids, but the Sencha team have created a more
organized way of doing this. With this class we can inject additional functionality
in certain points of the grid's creation cycle.

In Ext JS 4 we have four main classes that extend from Ext.grid.Feature.

Ext.grid.feature.Grouping
This feature displays the grid rows in groups; the configuration has to be done in
the grid with the feature property and has to be done on the grid store as well.

Give me the Grid

[224]

First we have to change our store a little bit as shown in the following code:

Ext.create('Ext.data.Store', {
 model:'Client',
 groupField:'country',
 data:[{
 client:1,
 name:'David',
 lastname:'Lee', age:24,
 email:'david@email.com',
 country:'China',
 paydate:'08/08/2012',
 amount:120.5,
 active:true
 },{
 client:2,
 name:'Lisa',
 lastname:'Brown',
 age:25,
 email:'lisa@email.com',
 country:'Japan',
 paydate:'08/08/2012',
 amount:120.5, active:false
 },{
 client:3,
 name:'Armando',
 lastname:'Gonzalez',
 age:30,
 email:'armando@email.com',
 country:'Mexico',
 paydate:'08/28/2012',
 amount:120,
 active:true
 },{
 client:4,
 name:'Mike',
 lastname:'Chang',
 age:27,
 email:'mike@email.com',
 country:'Japan',
 paydate:'08/08/2012',
 amount:12.5456,
 active:false
 },{

Chapter 7

[225]

 client:5,
 name:'Kevin',
 lastname:'Smith',
 age:28,
 email:'kevin@email.com',
 country:'Mexico',
 paydate:'08/08/2012',
 amount:54.5,
 active:true
 }]
});

Now we create the grid with the grouping feature as shown in the following code:

/**
 * @classMyApp.view.GroupingFeature
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the grouping feature example.
 */
Ext.define('MyApp.view.GroupingFeature', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
 features:[Ext.create('Ext.grid.feature.Grouping', {
groupHeaderTpl:'Group: {name} ({rows.length})'
 })],
 initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
 },
 createModel:function(){ //The definition of the client model
….},
 buildStore:function(){ //defining the client`s store
 ….
 },
 buildColumns : function(){
 return [{

Give me the Grid

[226]

 xtype:'rownumberer'
 },{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})</br>{email}</br>'
 },{
 text:'Country',
 width:60,
 dataIndex:'country'
 },{
 text:'Pay Date',
 xtype:'datecolumn',
 width:80,
 dataIndex:'paydate',
 format:'m-d-Y'
 },{
 text:'Total',
 xtype:'numbercolumn',
 width:80,
 dataIndex:'amount',
 renderer:Ext.util.Format.usMoney
 },{
 text:'Active?',
 width:80,
 dataIndex:'active',
 trueText:'YES',
 falseText:'NO',
 renderer:function (v) { //step 4
 var color = v ? 'red' : 'green',
v = v ? 'YES' : 'NO';
 m.style = 'color:' + color;
 return v;
 }
 }
];
 }
});

Chapter 7

[227]

The previous code outputs the grid shown in the following screenshot:

Ext.grid.feature.GroupingSummary
This feature adds an aggregate summary row at the bottom of each group that is
defined by the Ext.grid.feature.Grouping feature.

Let's add a grouping summary feature to our grid as shown in the following code:

/**
 * @classMyApp.view.GroupingSummaryFeature
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the grouping summary feature example.
 */
Ext.define('MyApp.view.GroupingSummaryFeature', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
 features:[//step 1
 {
 ftype:'groupingsummary',
 groupHeaderTpl:'Group: {name} ({rows.length})'
 }],

Give me the Grid

[228]

initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
},
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
 buildColumns : function(){
 return [{
 xtype:'rownumberer'
 },{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})</br>
 {email}</br>',
 summaryType:'count',
 summaryRenderer:function (value) { //step 2
 return value + ' client' + (value === 1 ? '' : 's');
 }
 },{
 text:'Country',
 width:60,
 dataIndex:'country'
 },{
 text:'Pay Date',
 xtype:'datecolumn',
 width:80,
 dataIndex:'paydate',
 format:'m-d-Y'
 },{
 text:'Total',
 xtype:'numbercolumn',
 width:80,
 dataIndex:'amount',
 renderer:Ext.util.Format.usMoney,

Chapter 7

[229]

 summaryType:'sum',//step 3
 summaryRenderer:Ext.util.Format.usMoney
 },{
 text:'Active?',
 xtype:'booleancolumn',
 width:80,
 dataIndex:'active',
 trueText:'YES',
 falseText:'NO'
 }];
}
});

In the previous example we are using the same store we used on the Ext.grid.
feature.Grouping example. The steps are explained as follows:

• Step 1: We defined our Ext.grid.feature.groupingSummary feature by its
ftype property and assigned a groupHeaderTpl property.

• Step 2: We are counting how many users are there in each group.
• Step 3: We are summarizing the total column for each group.

The output of our grouping summary example is shown in the following screenshot:

Give me the Grid

[230]

Ext.grid.feature.RowBody
This feature adds a body section for each grid row that can contain any markup. This
grid feature is useful to associate additional data of a particular record. It will also
expose additional events to the grid view like rowbodyclick, rowbodydbclick, and
rowbodycontextmenu.

Now let's add the row body feature to our grid as shown in the following code:

/**
 * @classMyApp.view.RowBodyFeature
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the grouping summary feature example.
 */
Ext.define('MyApp.view.RowBodyFeature', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
 features:[{
 ftype:'rowbody', //step 1
 getAdditionalData:function (data, index, record, orig)
 {//step 2
 return{
 rowBody:'' +
 Ext.util.Format.usMoney(data.amount) + ''
 }
 }
 }],
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
},
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
buildColumns : function(){
 return [{
 text:'Name',

Chapter 7

[231]

 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})</br>{email}</br>'
 }];
 }
});
]
});

The steps are explained as follows:

• Step 1: We have defined the rowbody feature.
• Step 2: In the getAdditionalData method we are rendering the total data of

our client in the rowBody property.

With this configuration we have the output as shown in the following screenshot:

Give me the Grid

[232]

Ext.grid.feature.Summary
This is the last grid feature we are going to explain; this feature adds a summary row
at the bottom of all the grid rows with aggregate totals for a column.

The code for this grid feature is as follows:

/**
 * @classMyApp.view.SummaryFeature
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the summary feature example.
 */
Ext.define('MyApp.view.SummaryFeature', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
 features:[{
 ftype:'summary'
}],
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
},
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
buildColumns : function(){
 return [{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})
 </br>{email}</br>',

Chapter 7

[233]

 summaryType:'count',
 summaryRenderer:function (value) {
 return value + ' client' + (value === 1 ? '' : 's');
 }
 }];
 }
});

We have highlighted the simple configuration that our grid needs to have, so we
can see our Ext.grid.feature.Summary feature working. When we execute our
previous code the result is shown in the following screenshot:

Plugins
In Ext JS 4 plugins provide custom functionality for the components. A plugin is an
Ext JS class that usually doesn't need to extend another Ext JS class. A plugin must
always have an init method that the Ext JS plugin system calls to initialize the
plugin.

The init method will take the component, which has the plugin as a parameter. This
method will configure all custom events, if any, and will also set up the methods to
listen to those events.

Give me the Grid

[234]

For the grid panel we have a set of five plugins already implemented in the Ext JS
library. They are the Ext.grid.plugin.Editing, Ext.grid.plugin.CellEditing,
Ext.grid.plugin.RowEditing, Ext.grid.plugin.DragDrop, and Ext.grid.
plugin.HeaderResizer plugins.

Ext.grid.plugin.Editing
This is an abstract class that provides grid editing on the selected columns.
The editable columns are specified in the column configuration of the grid. This
class should not be used directly; instead we should use the Ext.grid.plugin.
CellEditing and Ext.grid.plugin.RowEditing classes that are subclasses of
this abstract class.

Ext.grid.plugin.CellEditing
This plugin makes editing a single cell of our grid possible. We can only edit a
single cell at a time. The editor is defined in the editor property of our columns
configuration. If we don't define an editor in a column, it will be skipped by the
editor plugin.

We should always choose an appropriate field type to match our data, so if we were
using a number type it would be useful to use an Ext.form.field.Number class.

/**
 * @classMyApp.view.GridCellEditingPlugin
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the cell editing plugin example.
 */
Ext.define('MyApp.view.GridCellEditingPlugin', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
 plugins:[{
 ptype:'cellediting', //step 1
 clicksToEdit:1
 }],
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
},

Chapter 7

[235]

 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
 buildColumns : function(){
return [{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'{name} {lastname} (age: {age})</br>{email}</br>'
 },{
 text:'Country',
 dataIndex:'country',
 editor:{ //step 2
 xtype:'combo',
 allowBlank:false,
 displayField:'name',
 store:Ext.create('Ext.data.Store', {
 fields:['name'],
 data:[
 {"name":"China"},
 {"name":"Australia"},
 {"name":"Mexico"},
 {"name":"Japan"},
 {"name":"Usa"}
]
 })
 }
 },
 {
text:'Pay Date',
dataIndex:'paydate',
xtype:'datecolumn',
format:'m/d/Y',
editor:{ //step 3
xtype:'datefield',
allowBlank:false
 }
 }
];
 }
});

Give me the Grid

[236]

In our previous code we have added a cell editor. The steps are explained as follows:

• Step 1: We added our editing plugin so our grid becomes editable when the
user clicks on the cell.

• Step 2: We added a combo field as an editor for our country column.
• Step 3: We added a date field xtype so we can edit our clients' pay date.

Our previous code outputs the grid shown in the following screenshot:

Ext.grid.plugin.RowEditing
This plugin adds full row editing capabilities to the grid panel. When the editing
begins each editable column will show the field for editing, a Save button, and a
Cancel button will be display in the dialog for editing.

/**
 * @classMyApp.view.GridRowEditingPlugin
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the grid row editing example.
 */
Ext.define('MyApp.view.GridRowEditingPlugin', {

Chapter 7

[237]

extend: 'Ext.grid.Panel',
flex:1,
title:'Clients',
plugins:[{
ptype:'rowediting', //step 1
clicksToEdit:1
 }],
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
 },
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
 buildColumns : function(){
return [{
text:'Name',
xtype:'templatecolumn',
flex:1,
dataIndex:'name',
tpl:'{name} {lastname} (age: {age})</br>{email}</br>'
},{
text:'Country',
dataIndex:'country',
editor:{ //step 2
xtype:'combo',
allowBlank:false,
displayField:'name',
store:Ext.create('Ext.data.Store', {
fields:['name'],
data:[
{"name":"China"},
{"name":"Australia"},
{"name":"Mexico"},

Give me the Grid

[238]

 {"name":"Japan"},
 {"name":"Usa"}
]
 })
 }
 },
 {
text:'Pay Date',
dataIndex:'paydate',
xtype:'datecolumn',
format:'m/d/Y',
editor:{ //step 3
xtype:'datefield',
allowBlank:false
 }
 }
];
 }
});

The preceding code creates a grid panel with a row editing plugin. The steps are
explained as follows:

• Step 1: We defined our row editing plugin.
• Step 2 and step 3: We declared our column editors.

This configuration outputs the grid shown in the following screenshot:

Chapter 7

[239]

Grid paging
The grid panel supports paging through a large set of data via a PagingToolBar
item. To accomplish this we have to do some modifications to our store and add a
PagingToolBar item to our grid.

First we need to create our store as shown in the following code:

Ext.create('Ext.data.Store', {
 autoLoad:true,
 model:'Client',
 pageSize:10,
 proxy:{
 type:'ajax',
 url:'clients.php,
 reader:{
 type:'json',
 root:'data',
 totalProperty:'num'
 }
 }
});

In the definition of our store we declared a pageSize property of 10, and defined a
proxy so we can get the data from the server, so we can be able to paginate our data.

Then we define our grid and the PagingToolbar item our grid will have:

/**
 * @classMyApp.view.GridPaging
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the grid paging example.
 */
Ext.define('MyApp.view.GridPaging', {
 extend: 'Ext.grid.Panel',
 flex:1,
 title:'Clients',
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 me.dockedItems= me.buildDockedItems();
 this.callParent(arguments);
},

Give me the Grid

[240]

buildDockedItems : function(){
 return [{
 xtype:'pagingtoolbar',
 dock:'bottom',
 store:this.store,
 displayInfo:true
 }];
 },
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
buildColumns : function(){
 return [{
 xtype:'rownumberer'
 },{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'Clent : {name} {lastname}'
 }];
 }
});

In the previous code we declared a pagingToolbar item on the dockedItems
property of our grid; here we assigned the same store of our grid so the
pagingToolbar item references the same store.

Chapter 7

[241]

The previous code generates the output shown in the following screenshot:

Infinite scrolling
If we don't like the pagingToolbar item, Ext JS 4 introduces a new type of grid, the
infinite scrolling grid. This grid can render thousands of records without needing
the pagingToolbar item. The grid should be bound to a store with a pageSize
property that will load data dynamically according to the pageSize property.

Let's see an infinite scrolling example. First we need to add some configuration to
our store:

Ext.create('Ext.data.Store', {
 autoLoad:true,
 model:'Client',
 pageSize:100, //step 1
 purgePageCount:0, //step 2
 proxy:{
type:'ajax',
url:'clients.json',
reader:{
type:'json',
root:'data'
 }
 }
 });

Give me the Grid

[242]

In our previous store configuration, we declared a pageSize property of 100 and
set the purgePageCount property to 0. Setting the purgePageCount property
indicates that there is no need to purge data. This option is only relevant when
the buffered option is set to true. The buffered option allows the store to prefetch
pages of records.

Now let's see the definition of our grid as shown in the following code:

/**
 * @classMyApp.view.InfiniteScrolling
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This the infinite grid scrolling example.
 */
Ext.define('MyApp.view.InfiniteScrolling', {
 extend: 'Ext.grid.Panel',
 title:'Clients (Infinite scrolling)',
 flex:1,
 verticalScrollerType:'paginggridscroller', //step 1
 invalidateScrollerOnRefresh:false, //step 2
 disableSelection:true, //step 3
initComponent: function() {
 var me = this;
 me.createModel();
 me.columns = me.buildColumns();
 me.store = me.buildStore();
 this.callParent(arguments);
},
 createModel:function(){ //The definition of the client model
 …
 },
 buildStore:function(){ //defining the client`s store
 …
 },
buildColumns : function(){
 return [{
 text:'Name',
 xtype:'templatecolumn',
 flex:1,
 dataIndex:'name',
 tpl:'Clent : {name} {lastname}'
 }
];
 }
});

Chapter 7

[243]

The steps are explained as follows:

• Step 1: We have declared a paginggridscroller property. This will set our
infinite scrolling feature.

• Step 2: We set the invalidateScrollerOnRefresh property to false so
when we refresh the grid view our grid scroll does not reset.

• Step 3: We are disabling selection on our grid because infinite scrolling does
not support selection.

With these configurations been made we have the output as shown in the
following screenshot:

Give me the Grid

[244]

Summary
In this chapter we have learned how to configure our grid panels so we can get
the best of grid panels when developing our applications. It is important to know
what are the grid panel capabilities and how can we add custom functionality using
column renderers, grid features, or grid plugins.

You probably don't need to know all possible grid configurations, but if you forget
anyone you can always go and take a look to the Ext JS 4 documentation.

In the next chapter we are taking a look at the MVC application pattern. This pattern
is the way we should be doing applications in Ext JS 4.

Architecture
Before Ext 4 came out, we had to define our own architecture for every project; this
was a big problem because it's really easy to write bad code with JavaScript. Many
projects don't even have a defined architecture or standards to code.

There are many issues caused by not having a good architecture. One of the main
problems is when our application starts growing up and our code is not reusable
and maintainable. Therefore, it's really important to understand how we can create a
good architecture to work with big applications.

One of the main goals of the latest version of Ext JS is to define a common
architecture for all our Ext JS projects. It should be easy to follow and understand.
This way when a new developer joins the team it should be easier to explain and
understand the way everything works.

In this chapter we are going to learn about how we can tie everything together using
the MVC pattern, how to observe the events of the controller, and also we are going
to keep working on our final application example. The topics covered in this chapter
are as follows:

• The MVC pattern
• File system structure
• Creating views to represent our data
• Adding user interaction with controllers

The MVC pattern
One of the greatest things about using the MVC pattern is that many developers
are familiar with it. We probably use this pattern on our server side. This allows
new JavaScript developers to easily understand how to build the architecture of
their own applications.

Architecture

[246]

In case you don't know anything about the MVC pattern I suggest you read
about it. It's important to understand this before we continue. In a few words the
Model-View-Controller (MVC) pattern allows us to define three layers, where we
define specific responsibility for each layer.

The model layer, as previously mentioned in Chapter 4, It's All About the Data, is
intended to define our domain objects with the required data structure. Ext comes
with a powerful data package, where we can handle all our data easily.

The view layer allows us to display the data that we already have in memory to
the end user. Ext contains many components, layouts, and widgets that we can
use in order to show our data. We have already seen forms and grids in the
previous chapters.

The controller layer will serve as an observer; we can listen for events in our views
to perform some actions. We will define the logic of our application in this layer,
such as showing and hiding some component depending on certain rules
and user's input and sending data to the server.

By having these three layers we can write better code, which is easier to maintain
and easier to expand when our application grows.

It's important to mention that Sencha is introducing this feature as a
recommendation. We can always use the architecture we want, but by using
these recommendations it's going to be easier to share code with others, easier
to understand other people's code, and easier to integrate a new developer to
our project.

Creating our first application
Ext 4 introduces the Ext.app.Application class. The main purpose of this class is to
define the namespace, where our application will reside, and the point of entry. This
code will be executed at the beginning and will be used to start our application.

We can create an instance of the application class manually or even extend it to
add any modification or behavior that we need; however Ext defines a method that
creates the application instance for us:

Ext.application = function(config) {
 Ext.require('Ext.app.Application');

 Ext.onReady(function() {
 new Ext.app.Application(config);
 });
};

Chapter 8

[247]

The previous code has been extracted from the Ext JS library. The application
method requires the Ext.app.Application class; we don't have to worry about
setting the Ext path to the loader because it's set automatically by the library when
importing the ext-dev.js file.

Let's start by creating a simple application using the application method. We need
to create a file called app.js and write the following code:

Ext.application({
 name : 'MyApp',
 appFolder : 'app',
 controllers : [],
 launch : function(){
 console.log('Ready!');
 }
});

First we define the name configuration of our application; in this case we are using
MyApp as the name, but we can use any name. It's important to note that we should
use MyApp as the root namespace for all the classes that we create. This will allow us
to wrap our code in the MyApp object and avoid collisions with the third-party code.

The appFolder configuration allows us to set the path to the loader for the MyApp
object. By default, a folder called app will be used, but we can define any other
folder, for example something like js/MyApp or js/app.

The controllers configuration is an empty array for now, but in here we can define
all the controllers that we need to load and instantiate at the very beginning when
launching our application. At the moment we don't have anything in here, but we'll
come back and add our main controller later in this chapter.

Finally, the launch method will be executed when everything is ready. In here we
can execute anything we want, some people use this function to create the main
viewport of the application.

In order to execute our application in the browser we need to create the HTML file
and import the Ext library and the app.js file that we have just created.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>Application</title>

Architecture

[248]

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.0/ext-dev.js"></
script>
<link rel="stylesheet" href="../extjs-4.1.0/resources/css/ext-all.css"
/>

<script type="text/javascript" src="app.js"></script>

</head>
<body>
</body>
</html>

Now we are ready to test our code. Using our favorite browser let's navigate to the
HTML file. For now we will only see a message in the JavaScript console and nothing
else. This is because at the moment we have only created an empty application.

We need to run our code using a web server; this is
required because we are going to perform some Ajax
calls later in this chapter.

Once we have our application definition in place we need to start creating the content.
First we need to define the folder structure as shown in the following screenshot:

We create the app folder because that's the path we defined in our application
(using the appFolder configuration). We can use any name we want, but the
convention name is app.

The main folder for our application contains four folders within it: controller, model,
store, and view. Each of these folders will contain our JavaScript classes.

Chapter 8

[249]

In the controller folder we will create classes that will listen for events in the views
and make Ajax requests to the server in order to send and receive data. Basically all
the logic for our application will be in this folder.

In the model folder we will create our model classes with all the properties,
relationships, and all the information that we need to handle.

The store folder will contain classes that extend from the Ext.data.Store class and
will serve as a collection for the defined models. We have created this folder because
it's a convention. If we use the Sencha Architect, we will see this folder when saving
the project.

In the view folder we will create all the required components to show our data,
components such as grids, forms, trees, buttons, and so on.

Also we have defined a resources folder, where we will add our CSS stylesheets and
the images that we are going to use for our application.

This is a typical folder structure for a project; this is the recommendation and
convention that Sencha is introducing in this new version of the Ext JS library. It's
important to note that we can change this structure and make our own if we want.
This structure is just a recommendation.

In real world applications we usually add the third-party code, extensions, plugins,
or reusable components developed by other people. It's a good idea to have the
app folder inside of a js folder, where we can also create more folders to add other
people's code, something as shown in the following screenshot:

Architecture

[250]

This way we can group all the JavaScript code that we are going to use, even
components from the third-party companies. For now we are going to keep working
with the previous structure, but if you want to continue with the second option, just
make sure to change the appFolder property in the application definition accordingly.

The views
As mentioned before we use views to define our user interface with the available
components and widgets of the library. We will start by creating the main viewport.

We can create the viewport manually using the Ext.create method inside of
the launch callback, but the Application class is able to create the viewport
automatically using a convention of defining a Viewport class in our views folder.

At the end of Chapter 5, Buttons and Toolbars, we created the main menu of our final
application. We used a viewport to take all the available space in the browser, now
we are going to use that same code. Let's create a Viewport.js file under the
app/view folder and paste the code that we already have:

Ext.define('MyApp.view.Viewport',{
 extend : 'Ext.container.Viewport',

 layout : 'fit',

 initComponent : function(){
 var me = this;

 me.items = [{
 xtype : 'panel',
 dockedItems : [{
 xtype : 'toolbar',
 docked: 'top',
 itemId: 'mainmenu',
 items : [{
 text : 'Start',
 iconCls : 'home-icon16',
 itemId : 'startbutton',
 menu : [
 {text:'Clients',iconCls:'clients-icon16'},
 {text:'Invoices',iconCls:'invoices-icon16'},
 {text:'Categories',iconCls:'categories-icon16'}
]
 },{

Chapter 8

[251]

 xtype: 'tbfill'
 },{
 text : 'John Doe',
 icon : 'resources/images/user_suit.png'
 }]
 }]
 }];

 me.callParent();
 }
});

The only changes we have made here were the definition of the itemId property for
the toolbar and for the start button, also we have modified the icon path to fit our
folder structure. The rest of the code is the same.

An itemId property can be used as an alternative way to get a
reference to a component when no object reference is available.
It is an identification that we assign to components and we can
search for a component by its itemId property at any time. We
don't need to worry about collisions; the itemId property should
be unique only for the siblings of the component but not globally.

Also we need to modify two more files. First we need to create the viewport
automatically, to do this let's modify our app.js file as follows:

Ext.application({
 name : 'MyApp',
 appFolder : 'app',
 controllers : [],
 autoCreateViewport : true
});

We have added the autoCreateViewport property to our definition. By doing this
the Application class will look for a class called MyApp.view.Viewport. It will
include the JavaScript file in the document using the loader and it will create the
instance of this class. Keep in mind that the file of this class should be in the app/
view/Viewport.js file. We have also removed the launch callback because we are
not going to use it.

Architecture

[252]

The previous code uses some icons, we need to define the styles for them. Let's create
a style.css file under resources/css and paste the code that we already have
from Chapter 5, Buttons and Toolbars:

.home-icon16{
 background:transparent url(../images/house.png) center 0 no-repeat
!important;
}
.clients-icon16{
 background:transparent url(../images/user_green.png) center 0 no-
repeat !important;
}
.invoices-icon16{
 background:transparent url(../images/table_money.png) center 0 no-
repeat !important;
}
.categories-icon16{
 background:transparent url(../images/application_view_icons.png)
center 0 no-repeat !important;
}

Also we need to copy all the required images to the resources/images folder.
Finally, we need to modify our index.html file to include the CSS file:

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8" />
<title>Application</title>

<!-- Importing the Ext JS library -->
<script type="text/javascript" src="../extjs-4.1.0/ext-dev.js"></
script>
<link rel="stylesheet" href="../extjs-4.1.0/resources/css/ext-all.css"
/>
<link rel="stylesheet" href="resources/css/style.css" />

<script type="text/javascript" src="app.js"></script>

</head>
<body>
</body>
</html>

Chapter 8

[253]

Once we have all the new changes, let's try our application in our favorite browser.
We will see a viewport that contains a toolbar at the top with the Start menu and
some options on it as shown in the following screenshot:

It's important to mention that when we use the ext.js, ext-debug.js, or ext-dev.
js files the loader is enabled by default so we don't have to worry about it.

The controller
We have our main view in place, but it doesn't do anything. In order to add some
functionality we need to create a controller that listens to events on the menu and
shows the corresponding module.

Let's start by creating a new JavaScript file called app/controller/main/Main.
js, where we are going to write our Controller class. We are also creating a main
folder for our module.

It's a good idea to create folders to group controllers, views,
models, or stores that belong to the same module. This way
is going to be easier to locate each class when our application
starts growing.

Architecture

[254]

Once we have our empty file let's write the following code in it:

Ext.define('MyApp.controller.main.Main',{
 extend : 'Ext.app.Controller', //Step 1

 init : function(){ //Step 2
 var me = this;

 console.log('Initializing the controller');
 }
});

We are creating a class using the Ext.define method as usual. It's important to note
that the name of the class corresponds to the folder structure and the filename. This
is a convention so the loader can work properly. It is explained in detail in Chapter 2,
The Core Concepts.

In the first step we extend from the Ext.app.Controller class. This class contains
several methods that will help us listen to events and save references; basically we
are going to add our logic in here.

In the second step we have defined a method called init. This method will be
executed when our controller is created. This method is like a constructor for our
class, it will be the first code executed in our controller; in here we usually create
the listeners.

Now we have an empty controller that only shows a message on the JavaScript
console. We need to add this controller to our application definition. Let's modify
the app.js file as follows:

Ext.application({
 name : 'MyApp',
 appFolder : 'app',
 controllers : [
 'MyApp.controller.main.Main'
],
 autoCreateViewport : true
});

By adding our new class to the controllers array we are indicating to our
application to load and execute our main controller at the very beginning. We can
even define as many controllers as required in the array and all of them will be
loaded and executed in the order we have declared them.

If we execute our application, we will only see the message on the JavaScript console.
This means our main controller is working!

Chapter 8

[255]

Listening events
Once we have our controller in place let's add some actions to our view. We need
to open a new module when the user clicks on any option of the menu. All we need
to do is to add a listener to the click event of each option. We do that by using the
control method that is defined in the Controller class that we are extending.

Ext.define('MyApp.controller.main.Main',{
 extend : 'Ext.app.Controller',

 init : function(){
 var me = this;

 //Step 1
 me.control({
 'toolbar[itemId=mainmenu] button[itemId=startbutton] menuitem: {
 click : me.openModule
 }
 });
 },

 //Step 2
openModule : function(menuoption){
 console.log('Open the module now!');
 }
});

In the first step we are calling the control method. This method receives an object
containing a selector to find the menu items, then we add the listener to the click
event. Each event receives a function to be executed when the event gets fired. In
here, we can define as many selectors and events as required. To keep things simple
we are only defining one listener. Later in this chapter we will see an example with
more listeners.

In the second step we are defining the function that will be executed when the event
is fired. For now we are only sending a message to the console, but in here we are
going to do a lot of things later on.

Before we move forward, let's understand in detail how the selectors work and the
classes involved in this process.

Ext 4 introduces this concept to the library. We can search for components using
selectors. It is similar to performing DOM search using CSS selectors. In this case
we've used the following selector:

toolbar[itemId=mainmenu] button[itemId=startbutton] menuitem

Architecture

[256]

We can read the previous selector as follows:

Find a toolbar component whose itemId property should be equal to mainmenu.
Then search for a button component inside of the previous toolbar, whose itemId
property is equal to startbutton, then find all the menuitems that are children to
the startbutton.

When we create components they usually are inside of a container. In this specific
case the toolbar component is the main container, and we are using the itemId
property in case we have more toolbars. By using the itemId property we make sure
we are referring to the right component. The toolbar component contains buttons;
we have two buttons here, the start menu button and the button where the name
of the user is shown. Finally, inside of the start button there's a menu that contains
three menuitem components.

The following screenshot shows the tree of components that are created. In this
screenshot we can see in a better way how our previous selector was constructed:

It's important to mention that we are using xtype of each component to create
our selectors. The syntax of the selectors is very similar to the CSS selectors that
we already know; we use brackets when we want to refer to the property of a
component. In this case we've been using the itemid property, but we can use any
of the available properties on the API or even define our own custom properties.

We can also use the numerical symbol (#) to refer to the id or itemId property.
With this in mind we can define our previous selector as follows:

#mainmenu #startbutton menuitem

Chapter 8

[257]

Instead of using xtype and then the itemId property we can only use the numerical
symbol with the identification we already defined for each component.

It's very important to create our selectors as specific as
possible because if we define them very generic, the selector
will probably match components that we don't want.

Under the hood the control method uses a bus of events (Ext.app.EventBus) that
manages all the events in our application. We can find all our selectors in here.

The bus of events uses a class called Ext.ComponentQuery. This class is responsible
for performing a search in the tree of components that are created when we start
using containers.

The component query class is one of the most useful classes in the framework. There
are some methods defined in every container component that we can use to perform
a search. For example, we can search for children of a certain component calling the
down method. We can also search the parents of a component using the up method.
There's a method called is that we can use to see if a component matches a selector.

We are going to be working with selectors over the next chapters. For now let's
just keep in mind that the component query class allows us to search for instances
of components.

Opening modules
Once we have our listeners in place, we need to open a tab when the user clicks
on one of the options of the main menu. In order to do this, we need to create a
tab panel, which is a container of tabs. Then we need to import the classes to the
document, which were involved in the selected module and finally, create and show
the views of the module.

Let's start by modifying our viewport (app/view/Viewport.js) to add the tab panel:

Ext.define('MyApp.view.Viewport',{
 extend : 'Ext.container.Viewport',
 requires : [//Step 1
 'Ext.tab.Panel',
 'Ext.window.MessageBox'
],

 layout : 'fit',

 initComponent : function(){
 var me = this;

Architecture

[258]

 me.items = [{
 xtype : 'panel',
 layout: 'fit',
 dockedItems : [{
 xtype : 'toolbar',
 docked: 'top',
 itemId: 'mainmenu',
 items : [{
 text : 'Start',
 iconCls : 'home-icon16',
 itemId : 'startbutton',
 menu : [
 //Step 2
 {text:'Clients',iconCls:'clients-
icon16',controller:'MyApp.controller.clients.Clients'},
 {text:'Invoices',iconCls:'invoices-
icon16',controller:'MyApp.controller.invoices.Invoices'},
 {text:'Categories',iconCls:'categories-
icon16',controller:'MyApp.controller.categories.Categories'}
]
 },{
 xtype: 'tbfill'
 },{
 text : 'John Doe',
 icon : 'resources/images/user_suit.png'
 }]
 }],
 items : { //Step 3
 xtype : 'tabpanel',
 itemId: 'maintabs',
 border: false,
 hidden: true
 }
 }];

 me.callParent();
 }
});

In the first step we add the classes that we are going to use, in this case, we need to
require the Ext.tab.Panel class and the Ext.window.MessageBox class.

Chapter 8

[259]

In the second step we add a new property to each option. The controller property
contains the class that we need to load when the user clicks on the option, we will
talk about this later on.

By loading the classes of our module just when the user
needs them allows us to start our main application faster.

Finally, in the last step we create our tab panel. We have assigned an itemId
property to get the instance of this component easily; we also hide this component
at the beginning.

Once we have those changes in our main viewport we need to go back to our main
controller (app/controller/main/Main.js) and dynamically include the selected
controller (that we haven't created yet) into our document.

Ext.define('MyApp.controller.main.Main',{
 extend : 'Ext.app.Controller',

 init : function(){
 //...
 },

 openModule : function(menuoption){
 var me = this,
 maintabs = Ext.ComponentQuery.query('#maintabs')[0]; //Step 1

 Ext.Msg.wait('Loading...');
 //Step 2
 Ext.require(menuoption.controller,function(){
 Ext.Msg.hide();

 console.log('Code is included now!');
 });
 }
});

In the first step of the previous code we use the component query to get the reference
of the tab panel container; we are going to use this reference to add the tab of our
new module.

In the second step we require the controller that has been selected by the user. We
show a loading message when we start downloading all the dependencies and
when everything is loaded we hide the loading message and print a message to the
JavaScript console.

Architecture

[260]

Once we have the controller and its dependencies included in our document we need
to create the instance of the controller:

openModule : function(menuoption){
 var me = this,
 maintabs = Ext.ComponentQuery.query('#maintabs')[0];

 Ext.Msg.wait('Loading...');
 Ext.require(menuoption.controller,function(){
 Ext.Msg.hide();

 //Step 1
 var controller = me.application.controllers.get(menuoption.
controller);

 if(!controller){
 //Step 2
 controller=Ext.create(menuoption.controller),{
 id : menuoption.controller,
 application : me.application
 });

 }else{
 //Step 3
 if(controller.container.isDestroyed){

 }
 }

 maintabs.show(); //Step 4
 });
}

In the first step of the previous code we verify if the controller already exists. Every
controller contains an instance of the main application; this application contains a
collection of all the controllers that exist.

The second step will be executed only if the controller has not been created before.
In here we create the instance of the selected controller by assigning an identification
and the reference to our main application. The id property is used in the first step to
retrieve the controller if it exists.

The third step will be executed only if the controller already exists. In here we verify
that the container view of this controller also exists. Maybe the controller exists, but
if the tab has been closed by the user before, we need to create the view again and
open the tab one more time.

Chapter 8

[261]

In the fourth step we show the main tab panel that is hidden by default.

So far we have included all the classes and its dependencies of our module. We
have also created the controller and shown the tab panel container. We are close to
the final result; we only need to create the tab, and initialize the main view of our
new module.

openModule : function(menuoption){
 var me = this,
 maintabs = Ext.ComponentQuery.query('#maintabs')[0];

 Ext.Msg.wait('Loading...');
 Ext.require(menuoption.controller,function(){
 Ext.Msg.hide();

 var controller = me.application.controllers.get(menuoption.
controller);

 if(!controller){
 controller = Ext.create(menuoption.controller, {
 id : menuoption.controller,
 application : me.application
 });

 //Step 1
 controller.container = me.createContainer(menuoption);

 //Step 2
 maintabs.add(controller.container);
 controller.addContent();

 //Step 3
 me.application.controllers.add(controller);
 controller.init(me.application);
 controller.onLaunch(me.application);
 }else{
 if(controller.container.isDestroyed){
 //Step 4
 controller.container = me.createContainer(menuoption);
 maintabs.add(controller.container);
 controller.addContent();
 }
 }

Architecture

[262]

 maintabs.show();
 maintabs.setActiveTab(controller.container);//Step 5
 });
},

createContainer : function(menuoption){
 return Ext.widget({
 xtype : 'container',
 title : menuoption.text,
 iconCls : menuoption.iconCls,
 closable : true,
 layout : 'fit'
 });
 }

In the first step we are creating the tab using the createContainer method. This
method returns an instance of the container component with the same title and icon
that is defined in the main menu; also we allow the user to close this tab and set the
layout to fit. It's important to note that we have created a container property inside
of the controller for our module; we are going to use this reference later on.

In the second step we finally add our new tab to the main tab panel container, and
also execute a method called addContent defined in our controller. The idea of this
method is to initialize the views of the new module.

In the third step we add our new controller to the collection of controllers so that we
know this module has been created before; also we execute the init and onLaunch
methods on our controller.

The fourth step is executed if the controller already exists and if the view of that
controller is destroyed. In here we need to create the view again so we are basically
repeating steps one and two, we don't need to repeat step number three.

In the fifth step we show our new tab by executing the setActiveTab method from
our tab panel. By doing this we give the focus to our new tab.

If we try our code now we will get a 404 error when loading the controller. This error
occurs because we haven't created any file or class for any of our modules.

Chapter 8

[263]

Before we move forward it's worth saying that the code that we just wrote is very
important for our application. We can add more features in here, for example we can
make an Ajax request to the server asking for permissions of the module that is going
to be loaded; we can restrict permissions here depending on the user's privileges or
we may load packages instead of each class. This will help us to speed things up in a
production environment. We will talk about preparing our code for deployment later
in this book and we will come back to these lines again.

Security should be always handled on the server side, however
sometimes it is necessary to hide or show some buttons or options
based on the user's permissions. This data should be provided by
the server side only for usability purposes but not for real security.

Creating a module
Let's work on the client module. In Chapter 1, The Basics, we defined a mockup
for this module. Let's take a look at the mockup so we can remember what we
need to do:

Architecture

[264]

We need a grid to show the existing clients. We should allow users to edit each
client by double-clicking on the row. In the left-hand side form we can edit existing
records, create new clients, or delete them. To keep things simple we are not going
to use a database or any server-side code for this example, we are only going to send
and read data from JSON files.

We need to start by creating the controller that is loaded when the user clicks on one
of the options of the main menu. Let's create a JavaScript file at app/controller/
clients/Client.js and define an empty controller:

Ext.define('MyApp.controller.clients.Clients',{
 extend : 'Ext.app.Controller',

 init : function(){
 var me = this;

 },

 addContent : function(){

 }
});

Now we have just an empty controller with the init and addContent methods that
are executed automatically when this module is opening. We need to make sure that
all our controllers that open a new module include a method called addContent,
where we can instantiate the main view of this module.

Now if we try our example we can see that an empty tab is opened under the top
toolbar, we are not getting the 404 error anymore:

Chapter 8

[265]

The controller for the client's module is loaded correctly and the container is ready to
be filled with the views of the new module. We'll come back to the controller class
later in this chapter, for now let's keep it empty.

We haven't created any view, so we need to start by creating a border layout to
hold the grid and the form for our clients. Let's create a file under app/views/
clients/MainContainer.js. This class will be the main container for the views
of this module:

Ext.define('MyApp.view.clients.MainContainer',{
 extend : 'Ext.container.Container',
 alias : 'widget.clients.main',
 requires : [
 'Ext.layout.container.Border',
 'Ext.resizer.BorderSplitterTracker'
],

 layout : 'border',

 initComponent : function(){
 var me = this;

 me.items = [{
 xtype : 'clients.grid',
 region: 'center'
 },{
 xtype : 'clients.form',
 width : 300,
 region: 'east',
 split : true,
 collapsible : true
 }];

 me.callParent();
 }
});

This code should look familiar since we talked about this in previous chapters.
We are using a border layout with two regions, one for the grid and one for the
form. The most important thing to note here is the way we are defining the alias
property. We are using a namespace for our alias property too; this is a very good
practice because we could probably have another main container in our invoice
module and in order to avoid collisions we include a namespace.

Architecture

[266]

One more thing to remark from the previous code is that we require two classes in
our class definition. These classes are used while creating a grid, and if we don't
require them, we are going to get some errors. One class is for the border layout and
the other one is for the split configuration.

Our previous code is using two components that we haven't defined yet. We need
to create those classes; let's start with the grid by creating a file called app/views/
clients/ClientsGrid.js and writing the required code for a grid panel:

Ext.define('MyApp.view.clients.ClientsGrid',{
 extend : 'Ext.grid.Panel',
 alias : 'widget.clients.grid',
 requires : [
 'Ext.view.TableChunker',
 'Ext.selection.RowModel',
 'Ext.grid.column.Column'
],

 border : false,

 initComponent : function(){
 var me = this;

 me.store = me.buildStore();
 me.columns = me.buildColumns();

 me.callParent();

 me.store.load();
 },

 buildColumns : function(){
 return [
 {text:'Name',dataIndex:'name',flex:1},
 {text:'Contact',dataIndex:'contact',flex:1},
 {text:'Address',dataIndex:'address',flex:1},
 {text:'Phone',dataIndex:'phone'}
];
 },

 buildStore : function(){
 return Ext.create('MyApp.store.clients.Clients');
 }
});

Chapter 8

[267]

We've learned about grids in Chapter 7, Give me the Grid. The previous code only
defines the store and the columns of the grid; we also require some dependencies
for this class.

If we use the ext-dev.js file, the library will send warnings to the
JavaScript console with those classes that are required to create a
component, that's how we know which classes we need to include.

By creating a method to define the columns, we are writing cleaner code. If we
extend this class, we can override the buildColumns method to add or remove
columns easily. The same applies to the buildStore method.

Once we have the view for the grid we need to work on our model and store. In
our previous code we defined a clients' store; this store will be used to fill our grid
with data. In here we will define the proxy and the reader, let's create a file under
app/store/clients/Clients.js and write the following code:

Ext.define('MyApp.store.clients.Clients',{
 extend : 'Ext.data.Store',
 alias : 'store.clients',
 model : 'MyApp.model.clients.Client',

 proxy : {
 type : 'ajax',
 url : 'serverside/clients/list',
 reader : {
 type : 'json',
 root : 'data'
 }
 }
});

We are using an Ajax proxy with a JSON reader. The URL, where the data will
come, is located at serverside/clients/list, so let's create that file and add
some dummy data to fill our store:

{
 "success" : true,
 "data" : [
 {"id":"1","name":"Tim and Tom Inc", "contact":"John
Doe","address":"123 St San Francisco CA","phone":"(12) 34 56 789"},
 {"id":"2","name":"Monster Inc", "contact":"Susan
Smith","address":"321 St San Antonio TX","phone":"(98) 76 55 321"},
 {"id":"3","name":"Cars and Trucks", "contact":"Jenny
Downy","address":"34th St Kansas City MO","phone":"(81) 32 55 109"}
]
}

Architecture

[268]

Finally, we need to create our model. This model will define all the fields that we
need to fill our grid with. Let's create a JavaScript file at app/model/clients/
Client.js and write the following code in it:

Ext.define('MyApp.model.clients.Client', {
 extend:'Ext.data.Model',

 fields:[
 'id','name','contact','address','phone'
]
});

The model is a very simple class and now we are ready with the grid. Let's work
on the form and create a JavaScript file at app/view/clients/ClientForm.js and
write the following code:

Ext.define('MyApp.view.clients.ClientForm',{
 extend : 'Ext.form.Panel',
 alias : 'widget.clients.form',
 requires : [

],

 title : 'Client form',
 bodyPadding : 5,
 defaults : {
 xtype : 'textfield'
 },

 initComponent : function(){
 var me = this;

 me.items = me.buildItems();
 me.dockedItems = me.buildToolbars();

 me.callParent();
 },

 buildToolbars : function(){
 return [{
 xtype : 'toolbar',
 docked: 'top',
 items : [
 {text:'New',iconCls:'new-icon16',action:'new'},
 {text:'Save',iconCls:'save-icon16',action:'save'},
 {text:'Delete',iconCls:'delete-icon16',action:'delete'}
]
 }];
 },

Chapter 8

[269]

 buildItems : function(){
 return [{
 xtype : 'hidden',
 name : 'id'
 },{
 fieldLabel : 'Name',
 name : 'name'
 },{
 fieldLabel : 'Contact',
 name : 'contact'
 },{
 xtype : 'textarea',
 fieldLabel : 'Address',
 name : 'address'
 },{
 fieldLabel : 'Phone',
 name : 'phone'
 }];
 }
});

In the previous example we are using all the things we have learned in the previous
chapters, things such as toolbars, buttons, fields, forms, and so on. One thing we
need to remark is that we are adding a custom property to each of the buttons of the
toolbar. The action property will allow us to create a selector that matches these
specific buttons, we could use any name for this property but action is a good name.

One more thing to remark is that we are setting the name of each field the same as
the names of the fields in our model; this will allow us to fill our form very easily
from the grid.

We also need to add the CSS classes that we are using in the buttons. Let's modify
our stylesheet (resources/css/style.css) and add the three new rules:

.save-icon16{
 background:transparent url(../images/disk16.png) center 0 no-repeat
!important;
}
.new-icon16{
 background:transparent url(../images/page_add16.png) center 0 no-
repeat !important;
}
.delete-icon16{
 background:transparent url(../images/delete16.png) center 0 no-
repeat !important;
}

Architecture

[270]

Once we have our models, stores, and views we need to tie everything together. We
do this in our client's controller that at this moment is empty. Before we create the
instance of our main client's view we need to include all the classes that are involved.
To do this we need to specify the dependencies in the client's controller as follows:

Ext.define('MyApp.controller.clients.Clients',{
 extend : 'Ext.app.Controller',
 models : [//Step 1
 'clients.Client'
],
 stores : [//Step 2
 'clients.Clients'
],
 views : [//Step 3
 'clients.ClientForm',
 'clients.ClientsGrid',
 'clients.MainContainer'
],

 init : function(){
 var me = this;

 },

 addContent : function(){

 }
});

In the first step we have defined an array of models, in here we will add all the
models that need to be included in this module. Since the models array implicitly
maps to the MyApp.model namespace we can avoid defining it, however we can use
it and it will work too, it's exactly the same.

In the second step we required all the stores for the client's module, we only have
one but we can add as many as we need.

The third step includes the views. In here we have only three classes, but we can have
any number of classes, again, we don't need to define the MyApp.view namespace.

With those changes in place all the dependencies will be included once the controller
is included. It is important to mention that if one of the classes is already imported,
the loader class will not include the file again.

Chapter 8

[271]

Once all the classes in our module are loaded we need to create an instance of our
main client's view and add it to the empty tab. We have defined an addContent
method in our controller. At the moment it's empty, but let's modify it as follows:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 addContent : function(){
 this.container.add({
 xtype : 'clients.main',
 itemId: 'clientmain'
 });
 }
});

We are accessing the this.container property; this property contains a reference to
the main tab. We are using the add method from the container and passing an object
to create the instance of the main view in our client's module. We used the alias, but
we can also use the Ext.create method.

Finally, we can test our changes! Let's open our favorite browser and navigate to our
HTML file. When clicking on the client's option we should see something like the
following screenshot:

Architecture

[272]

We have everything in place; the classes are loading dynamically when the module
is required. In this example we have a few classes, but in the real world this module
may have a lot of classes, so it's a good idea to load them just when they are required,
otherwise the first time we enter our application we will spend more time loading all
the modules and the content.

We also need to prepare our modules for production. We are going to do that in the
next chapters; for now we are going to load the classes one by one, which is a lot
slower, but it is great for development since we can debug our code easily.

Adding functionality
So far we are only showing data in the grid and an empty form. The buttons don't
work, the grid doesn't do anything. We need to add some functionality to our client's
module and this is where our controller shines.

We already know how to listen to events using the control method. Let's add a
listener for the double click event on the grid to load the form with the selected
data. In our client's controller we need to add the following code:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 init : function(){
 var me = this;

 // step 1
 // Define control method to listen for events
 // Listen for double click in grid
me.control({
 '#maintabs #clientmain grid' : {
 itemdblclick : me.loadForm
 }
 });
 },

 //Step 2
 // Function to load the form with the record in the
 // row that was double clicked.
loadForm:function(grid,record,item,index,event,ops){
 var form = this.container.down('form'); //Step 3

 form.getForm().loadRecord(record); //Step 4
 },

 //...

});

Chapter 8

[273]

In the first step we define the control method to listen for events; our selector is
targeting the grid inside the client's container. Then we listen for the itemdblclick
event that is triggered when the user performs a double-click in any row of the grid.

In the second step we create the loadForm function that is going to be called every time
the itemdblclick event is triggered. In here we are going to load the form with the
clicked record. According to the documentation this method receives six parameters.
We are going to use only the second parameter that is the record of the row clicked.

In the third step we search for the form. We are using the down method from
the main container to perform a search in all the descendent components of the
container. The selector is targeting the form. We have only one form, that's why our
selector is very simple, but in case we have a more complex structure we should
modify our selector accordingly.

Once we have the form instance we can assign the record's data. Every form panel
contains an instance of the Ext.form.Basic class. This class is responsible for
handling the data in the form, we can assign, retrieve, validate, load, and so on. To get
the basic form we use the getForm method from the form panel instance. In this case
we load the form from the record using the loadRecord method of the basic form.

Let's try our latest changes by double-clicking on one of the rows. We should see
something like the following screenshot:

Architecture

[274]

Now we can edit the data, but we can't save it yet. We need to add a listener to the
save button and then make an Ajax request to send the data to the server. After that
we will show a message to the user with the server response.

Let's modify our client's controller again to add the new listener:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 init : function(){
 var me = this;

 me.control({
 '#maintabs #clientmain grid' : {
 itemdblclick : me.loadForm
 },
 '#maintabs #clientmain form button[action=save]': {//Step 1
 click : me.save
 }
 });
 },

 //Step 2
save : function(){
 var form = this.container.down('form'); //Step 3

 Ext.Ajax.request({ //Step 4
 url : 'serverside/clients/save',
 params : form.getForm().getValues(),
 success: function(response,options){
 //Step 4
 var data = Ext.decode(response.responseText);

 Ext.Msg.alert('Alert',data.message);
 }
 });
 },

 //...

});

Chapter 8

[275]

In the first step we define a new selector to target the save button; in here we use the
action property to select the specific button. Also we listen for the click event that
receives the function to be executed when the event is fired.

In the second step we declare the save function, this function contains all the logic to
send the form data to the server.

In the third step we search for the form using the down method and a simple selector.

In the fourth step we make the Ajax request. In here we collect the data using the
getValues method from the basic form instance. This method returns an object with
the names/value for each field; we are sending these values to the server.

When we perform an Ajax request we need to define a success/failure callback that
will be executed when the server responds. In this case we only define the success
callback, but we should define the failure too. We expect the server's response to be
the following JSON:

{
 "success" : true,
 "message" : "The client has been successfully saved"
}

Once the JSON response is decoded we can access the message property and show
an alert to the user as shown in the following screenshot:

Architecture

[276]

The previous screenshot shows how the save request is sending the form fields, which
is by default, a POST request. We can receive those parameters on the server side.

In PHP we get those parameters as follows:

$name = $_POST['name'];

In Java we get those parameters as follows:

String name = request.getParameter("name");

In Ruby & Rails we get those parameters as follows:

name = params['name']

We are done with the save action, now it's time to start working on the other two
buttons. Let's start with the new button. When the user clicks on the New button we
should clear the form:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 init : function(){
 var me = this;

 me.control({
 '#maintabs #clientmain grid' : {
 itemdblclick : me.loadForm
 },
 '#maintabs #clientmain form button[action=save]' : {
 click : me.save
 },
 '#maintabs #clientmain form button[action=new]' :{
 click : me.clearForm
 }
 });
 },

 clearForm : function(){
 var form = this.container.down('form');

 form.getForm().reset();
 },

 //...

});

Chapter 8

[277]

First we define the selector for targeting the new button. This selector is very similar
to the other, and the only difference is the value of the action property. Also we
are listening for the click event and executing the clearForm method when the
event is fired.

Inside the clearForm method we search for the form the same way we did in the
other latest examples, then we execute the reset method from the basic form
instance to clear the form.

If we try our application, we will see how by clicking on the New button the form is
cleared and we can start entering data again.

The last feature in our module is the ability to delete a record. In here we need to
make an Ajax request to the server sending the ID of the record that we want to
delete and if the record is removed correctly in our database, we can remove the
record from the grid.

Let's start by modifying the client's controller as follows:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 init : function(){
 var me = this;

 me.control({
 '#maintabs #clientmain grid' : {
 itemdblclick : me.loadForm
 },
 '#maintabs #clientmain form button[action=save]' : {
 click : me.save
 },
 '#maintabs #clientmain form button[action=new]' : {
 click : me.clearForm
 },
 '#maintabs #clientmain form button[action=delete]' : {
 click : me.remove
 }
 });
 },

 remove : function(){
 var me = this, //Step 1
 form = me.container.down('form'),
 id = form.getForm().getValues().id;

Architecture

[278]

 Ext.Msg.confirm('Confirm','Are you sure that you want to delete
this client?',function(btn){ //Step 2
 if(btn === 'yes'){

 Ext.Ajax.request({ //Step 3
 url : 'serverside/clients/delete',
 params : {id:id},
 success : function(response){
 //Step 4
 var grid = me.container.down('grid'),
 record = grid.getStore().getById(id);

 grid.getStore().remove(record);
 form.getForm().reset();
 }
 });

 }
 });
 },

 //...

});

In the first step we define the selector and the event to listen to. The remove function
is where all the magic happens. We get the form reference and the id property of the
record to delete.

In the second step we are showing a confirmation from the user to delete the record.
If the user clicks on the Yes button, we proceed to the next step. If the user clicks on
the No button, we don't do anything.

In the third step we make the Ajax request and only send the id property of the
client to the server, then we wait for the answer.

Chapter 8

[279]

If everything goes well then the fourth step is executed. In here we search for the
grid and get the record by its id. Once we have the record we use the remove
method from the store and clear the form. In this example we are not listening for
the failure callback, but it would be a good idea to send a notification to the user if
there was an error while deleting the client from the database:

Finally, we are done with our client's module. We have implemented the four CRUD
actions using the MVC pattern.

References
Before we move forward we can see one line of code that is the same for all the
listeners. We are searching the form over and over again! We should do it only once
and then save a reference so we don't have to perform a search every time.

Architecture

[280]

The controller has an easy way to do just this. We can define references using
selectors and then we can use them in any of the methods in our controller. Let's
modify our client's controller as follows:

Ext.define('MyApp.controller.clients.Clients',{

 //...

 views : [
 'clients.ClientForm',
 'clients.ClientsGrid',
 'clients.MainContainer'
],

 refs : [{
 ref : 'clientForm',
 selector : '#maintabs #clientmain form'
 }],

 init : function(){
 var me = this;

 //...

 },

 //...

});

By using the refs array we can define as many references as we want. Each reference
should be an object with at least two configurations. First is the ref property, which
is the name of our reference, and second is the selector for this reference. This
selector should match the component that we want to create the reference to.

Once we define our reference we can access it by its name, in this example we can
get the reference by the getClientForm method. The next step is to replace the
following line of code:

me.container.down('form');

After replacing it, the reference will be as follows:

this.getClientForm()

Now the search is performed only once and then we only get the reference, this will
allow us to speed things up.

Chapter 8

[281]

Summary
Having a good architecture is a must. If we don't define a scalable and maintainable
architecture, our project will be at risk. There are many horror stories by developers
who have started a project without a good architecture and believe me when I say
that it is a nightmare to work on those projects. By following the guidelines of Sencha
we can work happily in a better manner.

Over the pages of this chapter we have learned how to organize our code using
classes and following the MVC pattern to assign the right task to each class. Using a
controller to write our logic for the views and give life to our components is a great
way to keep our code clean and organized.

We also learned how to load new modules on demand with all their dependencies.
The method we learned is great for the development phase because it's easy to
debug our code. We need to add some changes when deploying our application to
production, but that's another story that will be covered in the coming chapters.

In the next chapter we will learn about the DataView and Template classes. By using
a dataview we can create our very own custom components, add an HTML template,
and style with CSS.

DataViews and Templates
The dataview component is similar to the grid component but it is lighter. It is used
to render an HTML template for each record in the store. For the rendering process,
it uses an Ext.XTemplate class so that we can give style to each record in the store.
This component is very useful when you want to render data and don't need all the
power of the grid.

In this chapter, we'll learn how the Ext.view.View class (alias dataview) and the
Ext.XTemplate class work together.

The topics we are going to cover in this chapter are:

• The data connection (models and stores)
• A basic dataview
• Handling events on the dataview
• Templates
• A more complex dataview

The data connection (models and stores)
The dataview component is used to render data of a store like the grid component.
In this chapter, we are going to use a user model and a user's store like the ones we
defined in Chapter 8, Architecture so that we can display our dataview. We will be
using the Model–view–controller (MVC) pattern so we can get used to it, because
this is the way we will be writing our ExtJS 4.1 applications from now on.

DataViews and Templates

[284]

Defining our User Model
We'll be using the user model we used before. The model code goes as follows:

/**
 * @classApp.model.User
 * @extendsExt.data.Model
 * The definition of our user model
 * iam@armando.mx
 * @manduks
 */
Ext.define('App.model.User', {
extend: 'Ext.data.Model',
fields:[
 {name:'id', type:'int'},
 'avatar','firstName', 'twitter_account','lastName',
 {name:'active', type:'boolean' }
],
 proxy: {
 type: 'ajax',
 url : 'data/users.json',
 reader:{
 type:'json',
 root:'data'
 }
 }
});

In the previous code, we have our user model definition. This code goes in our
models definition folder of our application.

In our model definition, we have defined a proxy object. The code is as follows:

proxy: {
 type: 'ajax',
 url : 'data/users.json',
 reader:{
 type:'json',
 root:'data'
 }
 }

This model will get the data through ajax calls that is defined in the type property
of our proxy. The URL will be 'data/users.json' and the way the reader will
fetch the data will be in a json format and will get the data from the root node of
our data response.

Chapter 9

[285]

Defining the store
With our model defined, we are now going to define our store.

/**
 * @classApp.store.Users
 * @extendsExt.data.Store
 * This our users store definition
 * iam@armando.mx
 * @manduks
 */
Ext.define('App.store.Users', {
 extend: 'Ext.data.Store',
 requires:['App.model.User'], //step one

 autoLoad: true,
 model:'App.model.User'
});

In the previous code, we have defined our users store definition. We need to require
our user model in step one. Remember to put your store code in the Stores folder.

A basic dataview
Now, we are going to define the view of our application. We are going to place our
dataview file in the views folder. The purpose of this view is to have a component in
our application to activate or cancel users.

/**
 * @classApp.view.UsersView
 * @extendsExt.view.View
 * This the definition of our users data view
 */
Ext.define('App.view.UsersView', {
 extend: 'Ext.view.View', //step one
 xtype:'usersview', //step two
 store:'Users', //step three
 emptyText:'No users available', //step four
 tpl:[//step five
 '<tplfor=".">',
 '<div>{firstName} {lastName}</div>',
 '</tpl>'].join('')
});

DataViews and Templates

[286]

In the previous code, we have defined our user's dataview.

• In step one, we have extended our class from Ext.view.view. That's our
base class for all views and our users' view.

• In step two, we have the definition of xtype we are using, so we can
instantiate our view in a short and easy way.

• Then we add the data source of our view in step three.
• In step four, we have the emptyText property, which is a text to display

when our view has nothing to show.
• And finally, in step five, we have our Ext.XTemplate definition, so we can

render our data in a nice way using HTML and CSS.

Getting all our code together
Once we have our model, store, and view defined, we are ready to write the code to
see our dataview.

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'App',

 models: ['User'],
 stores:['Users'],

 requires:['App.view.UsersView'],
 launch: function() {
 Ext.create('Ext.Window',{
 width:200,
 height:200,
 items:[{
 xtype:'usersview'
 }]
 }).show();
 }
});

Chapter 9

[287]

The previous code defines a window that will contain our dataview definition, and
this code creates the following window:

Handling events on the dataview
Once we have our dataview defined, we are going to see some basic events handling
for it. To do that, we need to add some new properties in our view definition.

/**
 * @classApp.view.UsersView
 * @extendsExt.view.View
 * This the definition of our users data view
 */
Ext.define('App.view.UsersView', {
 extend: 'Ext.view.View',
 xtype:'usersview',
 store:'Users',
 emptyText:'No users available',
 itemSelector: 'div.selector', //step one
 tpl:[
 '<tpl for=".">',
 '<div class ="selector">', //step two
 '{firstName} {lastName}',
 '</div>',
 '</tpl>'].join('')
});

DataViews and Templates

[288]

• In the previous code, we have added two important lines of code that are
required to interact with our dataview.

• In step one, we have the itemSelector property that defines which DOM
node item will be used to select each item on our dataview.

• In step two, we have added to our template the DOM node definition, so the
itemSelector property will match the node.

Now, we are ready to listen for the itemclick event, which fires whenever a user
clicks an item on our dataview.

Adding the listeners to the dataview
Let's add the listener to the dataview:

Ext.define('App.view.UsersView', {
 extend: 'Ext.view.View',
 xtype:'usersview',
 store:'Users',
 emptyText:'No users available',
 itemSelector: 'div.selector',
 tpl:[
 '<tpl for=".">',
 '<div class ="selector">',
 '{firstName} {lastName}',
 '</div>',
 '</tpl>'].join(''),
 listeners:{
 itemclick:function(view, rec, item, index, event, opts)
{ Ext.Msg.alert('Ext JS', record.get('firstName')+' '+ record.
get('lastName')+' has been selected.');
 }
 }
});

Chapter 9

[289]

In the previous code, we have added an event listener to our dataview that is
executed when we click on one of our dataview items. The following screenshot
shows us the result:

Templates
In the Ext JS 4 library, we have two types of templates – the Ext.Template and the
Ext.XTemplate. Let's see what the main differences between these two classes are.

The Ext.Template represents an HTML fragment that will be rendered in the
dataview. Let's see an example of this class:

<!DOCTYPE HTML>
<html manifest="" lang="en-US">
<head>
<meta charset="UTF-8">
 <linkrel="stylesheet" href="http://cdn.sencha.io/ext-4.1.0-gpl/
resources/css/ext-all.css" />
<title>Ext.Template</title>
 <style type="text/css">
 #container{
 padding:50px;
 }
 </style>
</head>
<body>
 <div id="container"></div>
</body>
</html>

DataViews and Templates

[290]

<script type="text/javascript" charset="utf-8" src="http://cdn.sencha.
io/ext-4.1.0-gpl/ext-all-debug.js"></script>
<script type="text/javascript">
 //Ext.Template
 var template = new Ext.Template(//step one
 '<div>',
 '<imgsrc="{img}" height="40" width="120"></br>',
 '<spam>{description}</spam></br></br>',
 '<ahref="{url}">{text}',
 '</div>',
 // a configuration object:
 {
 compiled: true, // compile for performance
 });
 template.append('container', //step two
 {
 img:'http://www.sencha.com/img/sencha-large.png',
 cls:'awesome',
 text :'Visit sencha!!',
 url :'www.sencha.com',
 description:'Ext JS 4 is the next major advancement in our
JavaScript framework.'
 }
);
</script>

• In step one, we have defined our Ext.Template that will show a nice format
with an image, some description, and a link to www.sencha.com. We have
compiled our template so it renders faster.

• In step two, we are appending our template to the HTML div of our page
with the container ID and also are applying some data to our template.

The following screenshot is the result of the previous code:

Chapter 9

[291]

Now, let's talk about the Ext.XTemplate class. This class is more complex than the
Ext.Template class because it supports advanced functionality, such as:

• Auto filling arrays using templates and sub-templates
• Conditional processing with basic comparison operators
• Basic math function support
• Execute arbitrary inline code with special built-in template variables
• Custom member functions

The Ext.XTemplate provides the template mechanism for the Ext.view.View, so
when we use the dataview we have all the Ext.XTemplate capabilities. Let's see a
basic example of an Ext.XTemplate implementation:

In this example, we are going to render information about Sencha:

<!DOCTYPE HTML>
<html manifest="" lang="en-US">
<head>
<meta charset="UTF-8">
 <linkrel="stylesheet" href="http://cdn.sencha.io/ext-4.1.0-gpl/
resources/css/ext-all.css" />
<title>Ext.XTemplate</title>
 <style type="text/css">
 #container{
 padding:50px;
 }
 .product {
 float: left;
 padding: 8px;
 margin: 8px;
 }
 .active{
 opacity:1;
 }
 .inactive{
 opacity:.5;
 }
 </style>
</head>
<body>
 <div id="container"></div>
</body>
</html>
<script type="text/javascript" charset="utf-8" src="http://cdn.sencha.
io/ext-4.1.0-gpl/ext-all-debug.js"></script>

DataViews and Templates

[292]

<script type="text/javascript">
 var data = { // the data definition (step one)
 title:'SenchaInc',
 description:'Sencha equips developers with frameworks, tools and
services to help them build amazing web application experiences using
HTML5 and JavaScript.',
 img:'http://www.sencha.com/img/sencha-large.png',
 products:[
 {
 name:'Ext JS 3',
 description:"JavaScript Framework for Rich Apps in Every
Browser",
 img:'http://www.sencha.com/img/hero-extjs4-alt.png',
 active:0
 },{
 name:'Ext JS 4.1',
 description:"JavaScript Framework for Rich Apps in Every
Browser",
 img:'http://www.sencha.com/img/hero-extjs4-alt.png',
 active:1
 },{
 name:'Sencha Architect 1',
 description:'Build for Mobile and Desktop',
 img:'http://cdn.sencha.io/img/20120417-architect-2-hero-870.
png',
 active:0
 },{
 name:'Sencha Architect 2',
 description:'Build for Mobile and Desktop',
 img:'http://cdn.sencha.io/img/20120417-architect-2-hero-870.
png',
 active:1
 },{
 name:'Sencha Animator',
 description:'Create Mobile Animations with Ease',
 img:'http://www.sencha.com/img/20110930-animator-full-hero.
jpg',
 active:1
 },{
 name:'Sencha.io',
 description:'Sencha.io is a complete cloud platform for
building mobile web apps',
 img:'http://img1.sencha.com/files/misc/sencha-io-deploy60x60.
png',
 active:1
 }
]

Chapter 9

[293]

 };
 var template = new Ext.XTemplate(
 '<div>',
 '<imgsrc="{img}" height="40" width="120"></br>',
 '{[values.title.toUpperCase()]}</br>', //convert to
uppercase the title (step two)
 '<spam>{description}</spam></br></br>',
 '</div>',
 '<tpl for ="products">', //loop the products property within
the data (step three)
 '<tpl if="active > 0">', // interrogate if the product is
active (step four)
 '<div class="product active">',
 '<tpl else>',
 '<div class="product inactive">',
 '</tpl>',
 '<div style="float:left;padding:0 5px 0 0;">',
 '<imgsrc="{img}" height="60" width="60">',
 '</div>',
 '{name}</br>',
 '<spam>{description}</spam>',
 '</div>',
 '</tpl>'
);
 template.overwrite('container', data); //render the template with
data on a DOM node (step five)
</script>

• In step one, we define the data that will populate our Ext.XTemplate.
• In step two, we are doing some formatting to the title, so it renders

in uppercase.
• In step three, we are looping through the products property of our data

and are rendering each product in a nice format.
• In step four, we are using the if operator to provide conditional logic to our

template, so we can decide what parts of our template we need to render. In
this case, we are adding some CSS styles to our products. When a product is
inactive, we change the opacity of our product.

• And finally, in step five, we are rendering our data in our HTML document.

DataViews and Templates

[294]

The previous code generates the following output:

As we can see in the previous screenshot, we are listing some products; the products
that are not active and have less opacity than the active ones.

Now that we have learned how the templates work, we are ready to do a more
complex example.

A more complex dataview
A dataview component is a great component in the Ext JS library. In the next
example, we are going to list the users in the application and we are going to
activate or deactivate them with a double-click on the user record.

Let's add to our previous dataview code some lines:

/**
 * @classApp.view.UsersView
 * @extendsExt.view.View
 * This the definition of our users data view
 *
 */
Ext.define('App.view.UsersView', {
 extend: 'Ext.view.View',
 xtype:'usersview',
 store:'Users',
 emptyText:'No users available',
 itemSelector: 'div.user',
 tpl:[
 '<tpl for =".">',
 '<tpl if="active > 0">',// interrogate if the user is active
(step one)

Chapter 9

[295]

 '<div class="user active">',
 '<tpl else>',
 '<div class="user inactive">',
 '</tpl>',
 '<div class="content">',
 '<imgsrc="resources/images/user48.png" height="60"
width="60">',
 '</div>',
 '{firstName} {lastName}</br>', // render the name of
our users (step two)
 '<spam>{twitter_account}</spam>',
 '</div>',
 '</tpl>'].join(''),
 listeners:{
 itemdblclick:function(view, record, item, index, event, options)
{//listen to the double click (step three)
 if(record.get('active')){ // check if the user is active (step
four)
 Ext.fly(item).removeCls('active');
 Ext.fly(item).addCls('inactive');
 }else{
 Ext.fly(item).removeCls('inactive');
 Ext.fly(item).addCls('active');
 }
 //some server side call
 record.data.active = !record.data.active;
 }
 }
});

The previous code is the new data definition that we will use to activate or deactivate
our users, because we are using the MVC pattern. The only code we have to modify
is the App.view.UsersView class. We did a few modifications in our dataview code.

• First, in step one, we check if our user is active or not, so we can add some
css class if the user is active or not.

• In step two, we are rendering the user data.
• In step three, we are listening to the double-click event, so when the user

double-clicks on a dataview item, the user changes status.
• And finally, in step four, we do the logic to add or remove the css class to

visually show our activation/deactivation process. We used here the Ext.
fly method to get item reference. Remember that this method is used for
saving memory.

DataViews and Templates

[296]

To complete the dataview styling, we need some css class definitions that will go in
our app.css file:

.user {
 float: left;
 padding: 2px;
 margin: 2px;
 width:200px;
}
.active{
 opacity:1;
 background: #E6FFE6;
}
.inactive{
 opacity:.5;
 background: #F5F5F0;
}
.content{
 float:left;
 padding:0 5px 0 0;
}

In the previous code, we had some css that will give our dataview items some
nice format. Now that we have our code complete, we can see the final result in the
following screenshot:

Chapter 9

[297]

Summary
The dataview is a very flexible component that is useful when we want to render
data. It is easy to use and has a powerful API; because of the flexibility of the
Ext.XTemplate class, we can do a variety of things using these two components.

In this chapter, we have learned how the dataview class works. We have seen how
to use stores, models, and views to format the data we want to render. In Ext JS,
dataview is used commonly with templates, and the Ext.XTemplate class offers a lot
of useful configurations to validate and format our data. It is very important to know
the Ext.view.View capabilities against the Ext.grid.Panel features because some
times, in terms of performance, it is much better to use a dataview.

In the next chapter, we are going to see another awesome component,
Ext.tree.Panel; this component is one of the most well-designed and powerful
components in the Ext JS library, so keep reading, because we will learn to use one
of the most useful components in the library.

The Tree Panel
The Ext.tree.Panel class is a great component in Ext JS and also a great tool
when we want to display hierarchical data; a good example of this is a file
directory application.

Ext.tree.Panel extends from Ext.panel.Table, which is the same class that
the Ext.grid.Panel extends from. The features like columns, sorting, filtering,
renderers, drag-and-drop, the plugins, and extensions are expected to work in
Ext.tree.Panel as well. The main difference between the Ext.grid.Panel and
Ext.tree.Panel classes is the way they render data.

In this chapter we'll learn how Ext.tree.Panel works, its versatility, and ease
of use.

The topics we are going to cover in this chapter are as follows:

• A basic tree panel
• The TreeStore
• Tree nodes
• Tree drag-and-drop
• Adding and removing nodes
• The check tree
• The grid tree
• Adding an invoices' categories tree panel

The Tree Panel

[300]

A basic tree panel
In this example we are going to display a file directory using Ext.tree.panel.
Remember we are using the MVC pattern so our files need to be placed in the
correct folders of our application.

In the following example we are going to display the MVC pattern files' order:

/** view/BasicTreePanel
 * @classApp.view.BasicTreePanel
 * @extendsExt.tree.Panel
 * This is a basic Tree Panel example.
 */
Ext.define('App.view.BasicTreePanel', {
 extend: 'Ext.tree.Panel',
 xtype:'basictreepanel',
 title:'MVC pattern',
 root: {//define the data of our tree panel
 text:'Application', //the text the node is going to display
 expanded:true, //when the tree rendersthenode it will be expanded
by default
 children:[//the children of our Application node
 {
 text:'app',
 children:[// each node can have their own children
 {
 text:'app.js',
 leaf:true //when we set leaf to true, our node will be
last in the hierarchy and also its icon will change
 },{
 text:'controller'
 },{
 text:'model'
 },{
 text:'store'
 },{
 text:'view',
 children:[
 {
 text:'BasicTreePanel.js',
 leaf:true
 }
]
 }
]

Chapter 10

[301]

 },{
 text:'data'
 },{
 text:'index.html',
 leaf:true
 },{
 text:'resources',
 children:[
 {
 text:'css'
 },{
 text:'resources'
 }
]
 }
]
 }
});

In the preceding code we have the view definition of our tree panel. First we have to
understand our tree data source format. This data format is different from the store
data source format we have used. In this format we need to have a root node. This
node will be the main node of our tree from which the rest of the nodes will be drawn

Each node in the Ext.tree.Panel component has some properties that will define
its behavior, properties like leaf, expanded, text, and others will be discussed later
in this chapter.

Now let's see our Ext.application code, so we can render the tree panel in
our application:

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'App',

 requires:['App.view.BasicTreePanel'], // we need to require the
BasicTreePanel class sou we can used later.

The Tree Panel

[302]

launch: function() {
 Ext.create('Ext.Window',{
 width:630,
 height:318,
 title:'ExtTreePanel',
 autoScroll:true,
 frame:false,
 layout:'fit',
 items:[{
 xtype:'basictreepanel' // adding our tree panel definition to
our window
 }]
 }).show();
 }
});

In the preceding code we have our Ext.application definition. Here we are creating
a new Ext.Window that will be the container of our App.view.BasicTreePanel
definition. When the application launches, the window will be created and shown
with the tree panel in it.

The following screenshot shows our final result:

Chapter 10

[303]

As we have seen in the previous example the configuration and use of an Ext.tree.
Panel component is very simple, but there are some properties that we need to know
so we can understand this component better.

The TreeStore
The TreeStore is a store implementation designed for the Ext.tree.Panel
component. It provides methods for loading nodes, and it has the ability to use
the hierarchical tree structure combined with the store capabilities. The Ext.data.
TreeStore class is a subclass of the Ext.data.AbstractStore class, that's why it
behaves very similar to other stores.

When we define our Ext.data.TreeStore class we need to specify a model, but if
no model is specified, an implicit model will be created. This model will then be the
main model for our tree panel. For the tree to read the nested data, we need to apply
a set of data in a tree format as shown in the previous example.

Let's see an example of an Ext.tree.Panel component with an Ext.data.
TreeStore class. First we need the Ext.data.TreeStore definition:

/**
 * @classApp.store.Files
 * @extends Object
 * This is the definition of our TreeStore
 */
Ext.define('App.store.Files', {
 extend: 'Ext.data.TreeStore',
 proxy: {
 type: 'ajax',
 url : 'data/files.json'
 }
});

Our App.store.Files class extends from the Ext.data.TreeStore class. We
have set the proxy to get the data from our files.json file. Now let's see our
tree panel class:

/**
 * @classApp.view.TreeStoreTreePanel
 * @extendsExt.tree.Panel
 * This is a tree panel with a tree store configuration.
 */

The Tree Panel

[304]

Ext.define('App.view.TreeStoreTreePanel', {
 extend: 'Ext.tree.Panel',
 xtype:'treestorepanel',
 store:'Files'
});

Our tree class configuration gets very simple. We just added a store and we now just
need to tell our Ext.application file to render the panel:

/**
 * This is the main code of the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'App',

 requires:['App.view.BasicTreePanel','App.view.TreeStoreTreePanel'],
 stores:['Files'],//we import the store
 launch: function() {
 Ext.create('Ext.Window',{
 width:430,
 height:318,
 title:'ExtTreePanel',
 autoScroll:true,
 frame:false,
 layout:'fit',
 items:[{
 xtype:'treestorepanel'
 }]
 }).show();
 this.getFilesStore().load(); // load the TreeStore
 }
});

Chapter 10

[305]

In the Ext.application code we just added the TreeStore and the tree panel to our
window. The following screenshot shows the final result:

Tree nodes
The Ext.data.NodeInterface class is a set of methods that are applied to the model
to decorate it with a node API. This means that when we use a model with a tree, the
model will have all the tree-related methods. This class also creates extra fields on
the model to help maintain the tree state and the UI.

The Tree Panel

[306]

Some of the field's configurations are as follows:

• text: This property configures the text to show on the node label.
• root: This property is true if this is the root node.
• leaf: If this property is set to true, it indicates that this child can have no

children. The expand icon/arrow will not be rendered for this node.
• expanded: This property is true if the node is expanded.
• iconCls: This property configures the CSS class to apply for this node's icon.
• children: This property configures an array of child nodes.
• checked: This property is set to true or false to show a checkbox alongside

this node.

Tree drag-and-drop
Adding additional functionality to the tree panel in Ext JS 4 is easy with the help
of plugins.

We are going to use the Ext.plugin.TreeViewDragDrop plugin so our nodes can
have the drag-and-drop behavior.

This plugin creates a specialized instance of Drag Zone, which knows how to drag
out of a tree view and loads the data object which is passed to a cooperating Drag
Zone's method with the following properties:

• copy: This property is true if the tree view was configured with
allowCopy:true.

• view: This property configures the tree view from which the drag
was originated.

• ddel: This is an HTML element which moves with the mouse.
• item: This is a tree view node upon which the mousedown event

was registered.
• records: This is an array of models representing the data being dragged

from the source tree view.

The plugin also creates a specialized Drop Zone, where the nodes are going to be
dropped. When we add this plugin to the tree view, two new events may be fired
from the client tree view: beforedrop and drop. Note that this plugin must be
added to the tree view, not the panel itself.

Chapter 10

[307]

Let's see how this plugin works, lets write some code:

/**
 * @classApp.view.TreeStoreTreePanel
 * @extendsExt.tree.Panel
 * This is a tree panel with a tree store configuration.
 */
Ext.define('App.view.TreeStoreTreePanel', {
 extend: 'Ext.tree.Panel',
 xtype:'treestorepanel',
 store:'Files',
 viewConfig:{ //the view config of our tree panel
 plugins:{
 ptype:'treeviewdragdrop' // adding the drag and drop
implementation
 }
 }
});

We only need to add some lines to our App.view.TreeStoreTreePanel
implementation and we are ready to see the drag-and-drop component in action!:

The Tree Panel

[308]

Now let's see what we need to do if we want to drag-and-drop between two
Ext.tree.Panels:

We are only going to change some code in our Ext.application definition:

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'App',

 requires:['App.view.TreeStoreTreePanel'],
 stores:['Files'],

launch: function() {
 Ext.create('Ext.Window',{
 width:630,
 height:318,
 title:'ExtTreePanel',
 autoScroll:true,
 frame:false,
 layout : {
 type : "hbox",
 align : "stretch"
 },
 defaults:{
 flex:1
 },
 items:[{
 xtype:'treestorepanel'
 },{
 xtype:'treepanel',
 viewConfig:{ //the view config of our tree panel
 plugins:{
 ptype:'treeviewdragdrop' // adding the drag and drop
implementation
 }
 },
root: {
 text:'Application',
 expanded:true
 }
 }]
 }).show();
 this.getFilesStore().load();
 }
});

Chapter 10

[309]

First we need to change the window layout so it can render the two panels. Then
we add the other Ext.tree.Panel. Note that both tree panels have the Ext.tree.
plugin.TreeViewDragDrop plugin added on their viewConfig property.

Once we have made the appropriate changes we have the following result:

Adding and removing nodes
We can also add nodes dynamically to our tree panel. This is very handy because in
most cases when we use the tree panel we will end up facing this requirement. Here,
we will see how we can solve the problem in a fast and easy way.

In the following example we are going to add nodes dynamically to our tree panel
taking advantage of our previous drag-and-drop example:

/**
 * @classApp.view.NodeForm
 * @extendsExt.form.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * The node form panel
 */
Ext.define('App.view.NodeForm', {
 extend: 'Ext.form.Panel',
 xtype:'nodeform',
 border:false,
 frame:true,

The Tree Panel

[310]

 initComponent : function(){
 var me = this;
 me.items = me.buildItems();
 me.buttons = me.buildButtons();
 me.callParent();
 },
 buildItems : function(){
 var store = Ext.create('Ext.data.Store', {
 fields: ['value', 'name'],
 data : [
 {"value":true, "name":"File"},
 {"value":false, "name":"Folder"}
]
 });

 return [{
 fieldLabel : 'Name',
 name : 'text',
 xtype : 'textfield',
 },{
 fieldLabel : 'Type',
 xtype : 'combo',
 name : 'leaf',
 queryMode : 'local',
 displayField: 'name',
 valueField : 'value',
 store : store
 }];
 },
 buildButtons:function(){
 return [{
 text: 'Save',
 itemId: 'savebtn'
 }];
 }
});

In the previous code we have defined a form panel that will be used for adding
nodes to our tree panel.

Once we have the form class definition we will make some changes to the
App.view.TreeStoreTreePanel implementation so we can add the nodes:

/**
 * @classApp.view.TreeStoreTreePanel
 * @extendsExt.tree.Panel
 * @author Armando Gonzalez <iam@armando.mx>

Chapter 10

[311]

 * This is a tree panel with a tree store configuration.
 */
Ext.define('App.view.TreeStoreTreePanel', {
 extend: 'Ext.tree.Panel',
 xtype:'treestorepanel',
 store:'Files',
 tbar:[{
 text:'Add',
 iconCls:'add',
 menu:{
 items:{
 xtype:'nodeform'
 }
 }
 },{
 text:'Delete',
 iconCls:'delete',
 itemId: 'deletebtn'
 }],
 viewConfig:{ //the view config of our tree panel
 plugins:{
 ptype:'treeviewdragdrop' // addigng the drag and drop
implementation
 }
 }
});

We just added a toolbar to our tree panel; in this toolbar we added two buttons,
the Add button and the Delete button. In the Add button we are going to add our
App.view.NodeForm property as a menu, so when the user clicks, the form panel
will appear.

Now we just need to add the controller class definition. Remember it's all
about MVC.

/**
 * @classMyApp.controller.Main
 * @extendsExt.app.Controller
 * @author Armando Gonzalez <iam@armando.mx>
 * The main controller, in here we define all the app logic
 */
Ext.define('App.controller.Main', {
 extend: 'Ext.app.Controller',
 refs: [{
 ref: 'treePanel',

The Tree Panel

[312]

 selector: 'treestorepanel'
 }],
 requires:['App.view.TreeStoreTreePanel','App.view.NodeForm'],
 stores:['Files'],
 init:function(){
 var me = this;
 me.control({
 'nodeform #savebtn' : {// we get the save button reference
 click :me.addTreeNode
 },
 'treestorepanel toolbar #deletebtn':{// we get the delete button
reference
 click :me.deleteTreeNode
 }
 });
 me.getFilesStore().load();
 },
 addTreeNode:function(btn){
 var me = this,
 node,
 tree = me.getTreePanel(),
 selectedNode = tree.getSelectionModel().getSelection()[0] ||
tree.getRootNode(); //get the root node if there is not selection

 node = btn.up('form').getValues();//get the form values

 if(selectedNode.isLeaf()){ //insert the node in the parent node
 selectedNode.parentNode.insertChild(0,node);
 }else{//inserting as a child
 selectedNode.insertChild(0,node);
 }
 btn.up('menu').hide();// hide the menu
 },
 deleteTreeNode:function(){
 var me = this,
 tree = me.getTreePanel(),
 node = tree.getSelectionModel().getSelection()[0];
 if(node){
 node.remove(true);//true to destroy the node
 }else{
 Ext.Msg.alert('Warning', 'Please select a node!');
 }

 }
});

Chapter 10

[313]

In the previous code we have our controller definition. Here we have two main
methods: the addTreeNode and deleteTreeNode methods.

The addTreeNode method is where we do the logic for adding new nodes. We get
the parent node where our new node is going to be. Note that we are using the
getSelectionModel method, which is the same method we used in Chapter 7,
Gimme the Grid.

The deleteTreeNode method is where we do the deletion logic of the tree nodes. We
do a selection node validation and with the node.remove() method we destroy the
node after removing it.

The following screenshot shows the adding and removing node example:

The check tree
The tree panel also has the ability to add checkboxes to its nodes. To do this we need
to add one more property to each node in the data source that we are applying to the
tree panel.

The Tree Panel

[314]

This is how the data source configuration must go:

{
 "text":"images",
 "checked":false,
 "children":[
 {
 "text":"script_code.png",
 "leaf":"true",
 "iconCls":"image",
 "checked":false
 },{
 "text":"html.png",
 "leaf":"true",
 "iconCls":"image",
 "checked":true
 },{
 "text":"css.png",
 "leaf":"true",
 "iconCls":"image",
 "checked":false
 },{
 "text":"json.png",
 "leaf":"true",
 "iconCls":"image",
 "checked":true
 },{
 "text":"image.png",
 "leaf":"true",
 "iconCls":"image",
 "checked":true
 }
]
 }

As we can see in the previous code we added the checked property to our data
source. Now our tree is ready to display a checkbox in each node.

Chapter 10

[315]

The following screenshot shows the checked tree output:

The grid tree
The grid tree panel has the power of the tree mixed with the flexibility of the grid
panel; this tree configuration is very handy when we want to show more information
in our tree panel.

The Tree Panel

[316]

We will need a model, a store, and some columns' definition to get our tree panel
working. In this example we are going to list file properties, like file size, owner, and
creation date.

First we are going to define the file model:

/**
 * @classApp.model.File
 * @extends Object
 * @author Armando Gonzalez <iam@armando.mx>
 * The file model definition
 */
Ext.define('App.model.File', {
 extend: 'Ext.data.Model',
 fields:[
 {name:'name', type:'string'},
 {name:'owner', type:'string'},
 {name:'created_at', type:'date', dateFormat: 'm/d/Y'},
 {name:'size', type:'string'}
]
});

Now let's change our data source configuration so that the model we had just
defined can support it:

{
 "name":"images",
 "children":[
 {
 "name":"script_code.png",
 "leaf":"true",
 "owner":"Mark James",
 "created_at":"08/28/2012",
 "size":4,
 "iconCls":"image"
 },{
 "name":"html.png",
 "leaf":"true",
 "owner":"Mark James",
 "created_at":"08/28/2012",
 "size":4,
 "iconCls":"image"
 },{
 "name":"css.png",
 "leaf":"true",

Chapter 10

[317]

 "owner":"Mark James",
 "created_at":"08/28/2012",
 "size":4,
 "iconCls":"image"
 },{
 "name":"json.png",
 "leaf":"true",
 "owner":"Mark James",
 "created_at":"08/28/2012",
 "size":4,
 "iconCls":"image"
 },{
 "name":"image.png",
 "leaf":"true",
 "owner":"Mark James",
 "created_at":"08/28/2012",
 "size":4,
 "iconCls":"image"
 }
]
 }

Next let's see the tree store definition:

/**
 * @classApp.store.Files
 * @extendsExt.data.TreeStore
 * @author Armando Gonzalez
 * This is the definition of our File store
 */
Ext.define('App.store.Files', {
 extend: 'Ext.data.TreeStore',
 requires: 'App.model.File',
 model: 'App.model.File',
proxy: {
 type: 'ajax',
 url : 'data/files.json'
}
});

The Tree Panel

[318]

In the previous store definition we added the file model. Once we have our model
and store defined we are ready to define the file tree panel:

/**
 * @classApp.view.FilesTreePanel
 * @extendsExt.tree.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This is a tree panel with a tree store configuration.
 */
Ext.define('App.view.FilesTreePanel', {
 extend: 'Ext.tree.Panel',
 xtype:'filestreepanel',
 store:'Files',
 columns:[{
 xtype:'treecolumn',
 text:'File name',
 flex:1,
 sortable:true,
 dataIndex:'name'
 },{
 text:'Owner',
 flex:1,
 dataIndex:'owner'
 },{
 text:'Creation date',
 flex:1,
 dataIndex:'created_at',
 renderer :Ext.util.Format.dateRenderer('m/d/Y')
 },{
 text:'Size',
 flex:1,
 dataIndex:'size',
 renderer:function(v){
 return v ? v+ ' KB':'--';
 }
 }]
});

Chapter 10

[319]

As the tree panel inherits from the same class as the grid panel does, we can add
columns to our tree panel as we do with the grid panel. In the preceding code
we have defined the columns that the tree panel will display.

Finally, we add the tree panel to our Ext.Window component in the
Ext.application file:

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'App',

 requires:['App.view.FilesTreePanel'],
 stores:['Files'],

launch: function() {
 Ext.create('Ext.Window',{
 width:630,
 height:318,
 title:'ExtTreePanel',
 autoScroll:true,
 frame:false,
 layout:'fit',
 items:[{
 xtype:'filestreepanel'//adding the file tree panel to the
window
 }]
 }).show();
 this.getFilesStore().load();
 }
});

The Tree Panel

[320]

And the result is shown in the following screenshot:

Adding an invoices' categories tree panel
Now that we have learned how the tree panel works, we are ready to add the
invoices' categories tree panel to our application. We are going to make some
changes to our previous mockup as shown in the following screenshot:

Chapter 10

[321]

We are going to change the categories' UI, so we can have the categories' login to the
left-hand side and an invoices' data view to the right-hand side of our main panel.

Let's start defining our category model:

/**
 * @classMyApp.model.categories.Category
 * @extendsExt.data.Model
 * @author Armando Gonzalez <iam@armando.mx>
 * The category model definition
 */
Ext.define('MyApp.model.categories.Category', {
 extend: 'Ext.data.Model',
 fields:[
 {name:'name', type:'string'},
 {name:'owner', type:'string'},
 {name:'created_at', type:'date', dateFormat: 'm/d/Y'}
]
});

The Tree Panel

[322]

In this model we have defined the name, owner, and created_at fields so we can
keep track of our categories. Now let's see the store definition:

/**
 * @classMyApp.store.categories.Categories
 * @extendsExt.data.TreeStore
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of our Categories store
 */
Ext.define('MyApp.store.categories.Categories', {
 extend: 'Ext.data.TreeStore',
 requires: 'MyApp.model.categories.Category',
 model: 'MyApp.model.categories.Category',
proxy: {
 type: 'ajax',
 url : 'serverside/categories/list.json'
}
});

In the previous code we have the store definition for our categories' tree panel, now
we are ready to define our form panel view:

/**
 * @classMyApp.view.categories.CategoriesForm
 * @extendsExt.form.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * The categories form panel
 */
Ext.define('MyApp.view.categories.CategoriesForm', {
 extend : 'Ext.form.Panel',
 alias : 'widget.categories.form',
 border : false,
 frame : true,
 initComponent : function(){
 var me = this;
 me.items = me.buildItems();
 me.buttons = me.buildButtons();
 me.callParent();
 },
 buildItems : function(){
 return [{
 fieldLabel : 'Name',
 name : 'name',
 xtype : 'textfield',
 }];
 },
 buildButtons:function(){

Chapter 10

[323]

 return [{
 text: 'Save',
 itemId: 'savebtn'
 }];
 }
});

Our form panel has only one text field, which will be used to add the category name;
we are going to add this form to the tree panel definition:

/**
 * @classMyApp.view.categories.TreePanel
 * @extendsExt.tree.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of the categories tree panel
 */
Ext.define('MyApp.view.categories.TreePanel', {
 extend : 'Ext.tree.Panel',
 alias : 'widget.categories.tree',
 requires : [
 'Ext.tree.plugin.TreeViewDragDrop'
],
 store :'categories.Categories',
 tbar : [{
 text: 'Add',
 iconCls: 'new-icon16',
 menu:{
 items : {
 xtype:'categories.form'
 }
 }
 },{
 text:'Delete',
 iconCls:'delete-icon16',
 itemId: 'deletebtn'
 }],
 viewConfig : {
 plugins:{
 ptype:'treeviewdragdrop'
 }
 },
 columns:[{
 xtype:'treecolumn',
 text:'File name',
 flex:1,
 sortable:true,
 dataIndex:'name'
 }]
});

The Tree Panel

[324]

The previous code is a tree grid definition, so if we want to display more of our
categories' data, it will be easier to add those extra lines of code. Now we are going
to define the main container for our categories:

/**
 * @classMyApp.view.categories.MainContainer
 * @extendsExt.container.Container
 * @author Armando Gonzalez <iam@armando.mx>
 *
 * The main container that uses a border layout.
 */

Ext.define('MyApp.view.categories.MainContainer',{
 extend : 'Ext.container.Container',
 alias : 'widget.categories.main',
 requires : [
 'Ext.layout.container.Border',
 'Ext.resizer.BorderSplitterTracker'
],

 layout : 'border',

 initComponent : function(){
 var me = this;

 me.items = [{
 xtype : 'invoices.dataview',
 region: 'center'
 },{
 xtype : 'categories.tree',
 width : 300,
 region: 'west',
 split : true,
 collapsible : true
 }];

 me.callParent();
 }
});

Note that we are using a data view to display the invoices in each category; this data
view is very similar to the one we defined in Chapter 9, DataViews and Templates. Let's
do all the business logic of our categories module in the following controller:

/**
 * @classMyApp.controller.categories.Categories
 * @extendsExt.app.Controller
 * @author Armando Gonzalez <iam@armando.mx>
 *

Chapter 10

[325]

 * This is the main controller for categories
 */

Ext.define('MyApp.controller.categories.Categories',{
 extend : 'Ext.app.Controller',
 stores : [
 'categories.Categories',
 'invoices.Invoices'
],
 views : [
 'categories.CategoriesForm',
 'categories.TreePanel',
 'categories.MainContainer',
 'invoices.Dataview'
],
 refs: [{
 ref: 'treePanel',
 selector: '#categoriesmaintreepanel'
 }],
 init : function(){
 var me = this;
 me.control({
 '#categoriesmaintreepanel #savebtn' : {// we get the save button
reference
 click :me.addTreeNode
 },
 '#categoriesmaintreepanel toolbar #deletebtn':{// we get the
delete button reference
 click :me.deleteTreeNode
 }
 });

 me.getCategoriesCategoriesStore().load();
 me.getInvoicesInvoicesStore().load();
 },
 addTreeNode:function(btn){
 var me = this,
 node,
 tree = me.getTreePanel(),
 selectedNode = tree.getSelectionModel().getSelection()[0] ||
tree.getRootNode(); //get the root node if there is not selection

 node = btn.up('form').getValues();//get the form values

 if(selectedNode.isLeaf()){ //insert the node in the parent node
 selectedNode.parentNode.insertChild(0,node);
 }else{//inserting as a child
 selectedNode.insertChild(0,node);
 }

The Tree Panel

[326]

 btn.up('menu').hide();// hide the menu
 },
 deleteTreeNode:function(){
 var me = this,
 tree = me.getTreePanel(),
 node = tree.getSelectionModel().getSelection()[0];
 if(node){
 node.remove(true);
 }else{
 Ext.Msg.alert('Warning', 'Please select a node!');
 }

 },
 addContent : function(){
 this.container.add({
 xtype : 'categories.main',
 itemId: 'categoriesmain'
 });
 }
});

The controller behavior is very similar to the controller we used, in the adding
nodes example in the Adding and removing nodes section. We only need to update
the refs property and add the views required by the categories' module. We also
implemented the addContent method that is required by our main controller.

We are ready to see our categories' module implementation in our main application
as shown in the following screenshot:

Chapter 10

[327]

Summary
In this chapter we have learned the importance of the tree panels and how the
Ext JS library has implemented a very robust component that supports all the
common configurations we need while developing our applications. As with
all components in the library it is very important to know in which situation we
should use each component.

Remember when developing an Ext JS application we don't need to know all the
properties of the classes by memory, we can always go and search the awesome
API documentations the library has.

In the next chapter we are going to see how drag-and-drop works in Ext JS 4. This
chapter will be very interesting because we can always enhance our applications,
because some UIs work better and are more intuitive with drag-and-drop.

Drag and Drop
Drag and drop is a task that we humans do a lot in our day by day lives. That is why
in user interfaces it is very helpful for accomplishing certain tasks. But not all the
tasks can be accomplished that way. But when we face situations that do, Ext JS 4
offers a very complete set of classes to accomplish it.

Let's see the basic steps involved in drag-and-drop:

• Move the pointer to the object
• Press and hold the button of the pointing device, to grab the object
• Drag the object to the desired location
• Check if the desired location is a valid location to drop our object
• Drop the button in the desired location by releasing the button

Before starting our chapter, there are a few things we need to consider first, not all
situations that can be solved by drag-and-drop behavior must be solved that way, because:

• Extended dragging and dropping can stress the hand
• It is not always clear to users when an item can be dragged and dropped,

which can easily decrease usability
• Dragging requires more physical effort than just clicking on things

The most common situation for using drag-and-drop is ordering files between
folders. Another useful situation is ordering items in a panel. Now that we know
when to use the drag-and-drop operations, we are ready to learn how Ext JS helps
us solve these situations.

Drag and Drop

[330]

We are going to cover the following topics in this chapter:

• Make an item draggable
• Hitting the drop zone
• Drag-and-drop between Ext JScomponents
• Enhancing our application with drag-and-drop

Make an item draggable
The first step we need to do when implementing drag-and-drop is make our
object draggable, in Ext JS 4 this is very simple, let's see what we need to do to
accomplish this.

Let's start by defining a container and rendering it to a window:

/**
 * @classMyApp.view.Container
 * @extendsExt.Container
 * @author Armando Gonzalez <iam@armando.mx>
 * This the container of the make it draggable example
 */
Ext.define('MyApp.view.Container', {
 extend : 'Ext.Container',
 alias : 'widget.dnd.container',
 style : {
 backgroundColor:'white'
 },
 data : [
 {"id":"1", "name":"Invoice 1", "date":"08/28/2012",},
 {"id":"2", "name":"Invoice 2", "date":"08/28/2012",},
 {"id":"3", "name":"Invoice 3", "date":"08/28/2012",}
],
 tpl : [
 '<tpl for =".">',
 '<div class="invoice">',
 '<div class="content">',
 '<imgsrc="resources/images/invoice64.png" height="60"
width="60">',
 '</div>',
 '{name}</br>',
 '{[Ext.util.Format.date(values.date)]}',
 '</div>',
 '</tpl>'].join('')
});

Chapter 11

[331]

The previous code has a container definition with some raw data and a template
definition. This container is rendered in a window defined in our app.js file
as follows:

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'MyApp',

 requires:['MyApp.view.Container'],
 stores:[],

launch: function() {
 Ext.create('Ext.Window',{
 width:630,
 height:318,
 title:'Drag and Drop',
 autoScroll:true,
 frame:false,
 layout:'fit',
 items:[{
 xtype : 'dnd.container',
 }]
 }).show();
 }
});

In the preceding code, we have defined a window that has the container
definition. When we refresh our application we get the output, as shown in
the following screenshot:

Drag and Drop

[332]

Now let's make our invoices' objects draggable, to accomplish that we need to add
some behavior after the container renders:

/**
 * @classMyApp.view.Container
 * @extendsExt.Container
 * @author Armando Gonzalez <iam@armando.mx>
 * This the container of the make it draggable example
 */
Ext.define('MyApp.view.Container', {
 extend : 'Ext.Container',
 alias : 'widget.dnd.container',
 style : {
 backgroundColor:'white'
 },
 data : [
 {"id":"1", "name":"Invoice 1", "date":"08/28/2012",},
 {"id":"2", "name":"Invoice 2", "date":"08/28/2012",},
 {"id":"3", "name":"Invoice 3", "date":"08/28/2012",}
],
 tpl : [
 '<tpl for =".">',
 '<div class="invoice" id="invoice-{id}">',
 '<div class="content">',
 '<imgsrc="resources/images/invoice64.png" height="60"
width="60">',
 '</div>',
 '{name}</br>',
 '<span{[Ext.util.Format.date(values.date)]}',
 '</div>',
 '</tpl>'].join(''),
 afterRender:function(){
 var me = this,container;

 this.callParent(arguments);

 container = Ext.get(me.el.id).select('div.invoice'); //we get our
invoices objects

 Ext.each(container.elements, function(el) { // for each invoice
object
 vardd= Ext.create('Ext.dd.DD', el, 'invoicesDnDGroup', { //add
drag-and-drop functionallity and add it to de invoicesDnDGroup group
 isTarget : false
 });
 });
 }
});

Chapter 11

[333]

In the previous code, we do some extra logic in the afterRender method so each
of the invoices' objects gets the drag behavior. First we need to get all of our invoice
objects, then for each invoice object we have to create an Ext.dd.DD instance and
add it to the group this object will belong to. The following output shows how the
invoices objects can be dragged anywhere in the container:

Hitting the drop zone
Once we have made our objects draggable we are ready to make them droppable.
First, we need to define a valid drop zone, any zone that is not the valid one must
return the selected object to its original state. Let's add some code to our objects so
when it is not dropped in a valid zone it returns to its original state. To accomplish
this, the Ext.dd.DD class has some abstract methods that can be overridden:

• startDrag: It is an abstract method that is called after a drag/drop object is
clicked and the drag or mouse-down time thresholds have been met

• onDrag: It is an abstract method that is called during the onMouseMove event
while dragging an object

• onDragEnter: It is an abstract method that is called when this element begins
hovering over another DragDrop object

• onDragOver: It is an abstract method that is called when this element is
hovering over another DragDrop object

• onDragOut: It is an abstract method that is called when we are no longer
hovering over an element

Drag and Drop

[334]

• onDragDrop: It is an abstract method that is called when this item is dropped
on another DragDrop object

• endDrag: It is an abstract method that is called when we are done dragging
the object

We are going to define an extended implementation of the Ext.dd.DD class that will
implement that invalid target validation:

/**
 * @class Ux.dd.DD
 * @extends Ext.dd.DD
 * @author Armando Gonzalez <iam@armando.mx>
 * This is a an extension of the Ext.dd.DD so we can implement a
personalized Drag-n-drop behavior
 */
Ext.define('Ux.dd.DD', {
 extend : 'Ext.dd.DD',
 startDrag : function(e){
 console.log('startDrag');
 if (!this.el) {
 this.el = Ext.get(this.getEl());
 }
 this.el.addCls('selected');
 this.initialPosition = this.el.getXY();
 },
 onDrag : function(){
 console.log('onDrag');
 },
 onDragEnter : function(e, id) {
 console.log('onDragEnter');
 },
 onDragOver : function(e, id) {
 console.log('onDragOver');
 },
 onDragOut : function(e, id) {
 console.log('onDragOut');
 },
 onDragDrop : function(e, id) {
 console.log('onDragDrop');
if(this.initialPosition != this.el.getXY()){ //if the initial position
is diferent from the actual when finishing dragging
 this.onInvalidDrop();
 }
 },
 onInvalidDrop : function() {
 console.log('onInvalidDrop');

Chapter 11

[335]

 this.el.removeCls('selected');
 this.el.moveTo(this.initialPosition[0], this.initialPosition[1]);
// return the object to its original position
 },
 endDrag : function() {
 console.log('endDrag');
 this.el.highlight();
 }
});

In the startDrag method, we get the initial position of our object so we can return
it when it has been dropped on an invalid zone. In the onInvalidDrop method we
set our object to the initial position. Sometimes, the object's final position is different
from the initial position and the drop zone is not a valid one, so we need to validate
these scenarios in the onDragDrop method and in the endDrag method, we do some
fancy highlighting so the user knows when the drag ends.

To see this in action, we need to add an extra container in our window definition:

layout : {
 type : "hbox",
 align : "stretch"
},
defaults:{
 margin:'3'
},
items:[{
 xtype : 'dnd.container',
 flex : 1
 },{
 xtype : 'container',
 flex : 1,
 style : {
 backgroundColor:'white'
 },
 }]

Now we need to use our drag-and-drop implementation in our container definition:

vardd= Ext.create('Ux.dd.DD', el.id, 'invoicesDnDGroup', {
 isTarget : true,
 });

Drag and Drop

[336]

The result is shown in the following screenshot:

The console logs for the drag-and-drop behavior are shown in the
following screenshot:

Now we are going to make the other container a valid drop zone, for this we are
going to use the Ext.dd.DDTarget class, this class definition is an implementation
that does not move, but can be a drop target.

Chapter 11

[337]

We are going to define a custom container that has this drop behavior:

/**
 * @classMyApp.view.DropContainer
 * Ext.Container
 * @author Armando Gonzalez <iam@armando.mx>
 * This the container for the drop zone
 */
Ext.define('MyApp.view.DropContainer', {
 extend: 'Ext.Container',
 alias : 'widget.drop.container',
 style : {
 backgroundColor:'white'
 },
 dropGroup:undefined,
 afterRender:function(){
 var me = this;
 this.callParent(arguments);
 Ext.create('Ext.dd.DDTarget', me.el, me.dropGroup);
 }
});

In the previous code we have a generic container with a drop implementation, now
we need to update the onDragDrop method of the Ux.dd.DD class so it adds the
object when our target is in a valid drop zone:

onDragDrop : function(e, id) {
 var me = this;
 console.log('onDragDrop');
 vardropEl = Ext.get(id);

 if(this.initialPosition != this.el.getXY()){ //if the initial
position is different from the actual when finishing dragging
 this.onInvalidDrop();
 }
 if (me.el.dom.parentNode.id != id) {
 dropEl.appendChild(this.el);
 me.onDragOut(e, id);
 }
 else{
 this.onInvalidDrop();
 }
 }

Drag and Drop

[338]

The preceding code appends the object to the container when it is a valid drop target,
once we have done this it updates to our code and we have output, as shown in the
following screenshot:

We have implemented a complete drag-and-drop example between two containers
using the Ext.dd package, now we are ready to implement a more complex
example using various Ext JS components.

Drag and drop between Ext JS
components
Most of the Ext JS components can be added to a drag-and-drop group, this means
that it is very easy to give them a drag-and-drop functionality. In the next example,
we'll see how easily we can implement a complete drag-and-drop user interface
using Ext JS components.

Chapter 11

[339]

Let's start by defining our wireframe, so we can get an idea of what the UI should
look like:

As we can see in the previous wireframe, we are going to use some Ext JS
components, such as a tree panel, a data view, a grid panel, a form panel, and a
container with a trash can icon so we can drag-and-drop the file object between them.

We are going to use a file model definition:

/**
 * @classMyApp.model.File
 * @extendsExt.data.Model
 * @author Armando Gonzalez <iam@armando.mx>
 * The file model definition
 */
Ext.define('MyApp.model.File', {
 extend: 'Ext.data.Model',
 fields:[
 {name:'name', type:'string'},
 {name:'owner', type:'string'},
 {name:'created_at', type:'date', dateFormat: 'm/d/Y'},
 {name:'size', type:'string'}
]
});

Drag and Drop

[340]

Then, we are going to define a Files Tree store:

/**
 * @classMyApp.store.TreeFiles
 * @extendsExt.data.TreeStore
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of our File store
 */
Ext.define('MyApp.store.TreeFiles', {
 extend: 'Ext.data.TreeStore',
 requires: 'MyApp.model.File',
 model: 'MyApp.model.File',
proxy: {
 type: 'ajax',
 url : 'serverside/tree-files.json'
}
});

And now we will define a Files store:

/**
 * @classMyApp.store.Files
 * @extendsExt.data.Store
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of our File store
 */
Ext.define('MyApp.store.Files', {
 extend: 'Ext.data.Store',
 requires: 'MyApp.model.File',
 model: 'MyApp.model.File',

proxy : {
type : 'ajax',
url : 'serverside/files.json',
 reader : {
 type : 'json',
 root : 'data'
 }
 }
});

Now we need our views; first we are going to define our file form panel:

/**
 * @classMyApp.view.FilesForm
 * @extendsExt.form.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * The files form
 */

Chapter 11

[341]

Ext.define('MyApp.view.FilesForm', {
 extend: 'Ext.form.Panel',
 alias: 'widget.filesform',
 bodyPadding : 5,
 defaultType : 'textfield',
 initComponent:function(){
 var me = this;
 me.items = me.buildItems();
 this.callParent(arguments);
 },
 afterRender:function(){
 this.callParent(arguments);
 var me = this, dropTarget = me.body.dom;
 Ext.create('Ext.dd.DropTarget', dropTarget, {
 ddGroup: 'filesDDGroup',
 notifyEnter: function(ddSource, e, data) { //when the drag object
enters the form panel
 me.body.stopAnimation();
 me.body.highlight();
 },
 notifyDrop : function(ddSource, e, data){

 //get the selected record
 varselectedRecord= ddSource.dragData.records[0];

// Load the record into the form
 me.getForm().loadRecord(selectedRecord);
 return true;
 }
 });
 },
 buildItems:function(){
 return [{
 fieldLabel : 'Name',
 name : 'name'
 },{
 fieldLabel : 'Owner',
 name : 'owner'
 },{
 xtype : 'datefield',
 fieldLabel : 'Created at',
 name : 'created_at'
 }];
 }
});

Drag and Drop

[342]

The afterRender method was overridden so we can add the drop functionality
to the panel using the Ext.dd.DropTarget class. The notifyEnter method is
fired when a valid object defined in the ddGroup property enters the panel, the
notifyDrop method fires when a valid object has been dropped in the panel.

Now we are going to define the grid panel:

/**
 * @classMyApp.view.FilesGrid
 * @extendsExt.grid.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This is our files grid panel
 */
Ext.define('MyApp.view.FilesGrid', {
 extend : 'Ext.grid.Panel',
 alias : 'widget.filesgrid',

 store:'Files',
 viewConfig:{
 plugins: { //drag and drop configuration
 ptype: 'gridviewdragdrop',
 ddGroup: 'filesDDGroup'
 }
 },
 columns :[
 {text:'Name',dataIndex:'name',flex:1},
 {text:'Owner',dataIndex:'owner',flex:1},
 {text:'Created at',dataIndex:'created_at',flex:1, renderer:Ext.
util.Format.dateRenderer('m/d/Y')}
]
});

We only need to add the grid Ext.grid.plugin.DragDrop plugin with the correct
ddGroup to the viewConfig of our grid and we are ready with our grid. Next we are
going to define our tree panel:

/**
 * @classMyApp.view.FilesTreePanel
 * @extendsExt.tree.Panel
 * @author Armando Gonzalez <iam@armando.mx>
 * This is a tree panel with a tree store configuration.
 */
Ext.define('MyApp.view.FilesTreePanel', {
 extend: 'Ext.tree.Panel',
 alias : 'widget.filestreepanel',
 store : 'TreeFiles',
 columns:[{

Chapter 11

[343]

 xtype:'treecolumn',
 text:'File name',
 flex:1,
 sortable:true,
 dataIndex:'name'
 }],
 viewConfig:{ //drag and drop configuration
 plugins:{
 ptype:'treeviewdragdrop',
 ddGroup: 'filesDDGroup'
 }
 }
});

The tree panel configuration is pretty similar to the grid panel, we just need to add
our plugin to the viewConfig file with the correct drag-and-drop group and we are
done with the tree panel configuration. Next we are going to define our data view
configuration; here we are going to use Ext.ux.Dataview.Draggablemixin that
comes in the ux folder of the Ext JS 4 library:

/**
 * @classMyApp.view.FilesView
 * @extendsExt.view.View
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of the files data view component
 */
Ext.define('MyApp.view.FilesView', {
 extend : 'Ext.view.View',
 alias : 'widget.filesview',
 store : 'Files',
 emptyText :'No files available',
 itemSelector: 'div.file',
 frame:false,
 ddGroup:undefined,
 style:{
 backgroundColor:'white'
 },
 mixins: { //drag an drop configuration mixin
 draggable : 'Ext.ux.DataView.Draggable'
 },
 tpl:[
 '<tpl for =".">',
 '<div class="file">',
 '<div class="content">',

Drag and Drop

[344]

 '<imgsrc="resources/images/invoice64.png" height="60"
width="60">',
 '</div>',
 '{name}</br>',
 '{[Ext.util.Format.date(values.created_at)]}',
 '</div>',
 '</tpl>'].join(''),
 initComponent : function(){
 var me = this;
 this.mixins.draggable.init(this, {
 ddConfig: {
 ddGroup: 'filesDDGroup'
 }
 });
 this.callParent();
 }
});

We need to initialize our mixin, so we just need to override the initComponent
method and initialize there the draggable mixin and pass it to the correct ddGroup.
The final step is to configure our trash container:

/**
 * @classMyApp.view.TrashContainer
 * @extendsExt.Container
 * @author Armando Gonzalez <iam@armando.mx>
 * The trash container for the drag-and-drop operation
 */
Ext.define('MyApp.view.TrashContainer', {
 extend: 'Ext.Container',
 alias : 'widget.trashcontainer',
 style : {
 backgroundColor:'#EEE'
},
 padding:'50 0 0 70',
 html :[
 '<div class = "file">',
 '<imgsrc="resources/images/recycle.png" height="128"
width="128">',
 '</div>'
].join(),
 dropGroup:'filesDDGroup',
 afterRender:function(){
 this.callParent(arguments);
 var me = this, dropTarget = me.el.dom;

Chapter 11

[345]

 Ext.create('Ext.dd.DropTarget', dropTarget, {
 ddGroup: 'filesDDGroup',
 notifyEnter: function(ddSource, e, data) {

//when the drag object enters the form panel
 me.el.stopAnimation();
 me.el.highlight();
 },
 notifyDrop : function(ddSource, e, data){
 Ext.Msg.alert('Ext JS','Item deleted.');
 }
 });
 }
});

The drag-and-drop implementation of the data view is pretty similar to the form
panel drag-and-drop implementation, but in notifyDrop we are sending some
feedback to the user when he/she drops a file object in this container.

The main container definition of our example goes as follows:

/**
 * @classMyApp.view.Main
 * @extendsExt.Container
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the main container of our application
 */
Ext.define('MyApp.view.main', {
 extend: 'Ext.Container',
 alias : 'widget.maincontainer',

 layout : {
 type : "hbox",
 align : "stretch"
 },
items:[{
 title:'Files tree',
 xtype:'filestreepanel',
 flex : 1
 },{
 xtype:'panel',
 title:'Files data view',
 flex : 2,
 layout : {
 type : "vbox",
 align : "stretch"

Drag and Drop

[346]

 },
 defaults : {
 flex : 1
 },
 items:[{
 xtype : 'filesview'
 },{
 xtype : 'filesgrid',
 title : 'Files grid'
 }]
 },{
 xtype : 'container',
 layout : {
 type : "vbox",
 align : "stretch"
 },
 defaults : {
 flex : 1
 },
 items:[{
 title : 'Files form',
 xtype : 'filesform',
 flex : 1
 },{
 xtype:'trashcontainer'
 }]
 }]
});

Now we just need to configure the main app file definition (app.js):

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.Loader.setPath({
 'Ux':'app/ux'
});
Ext.Loader.setPath('Ext.ux.DataView', 'app/Ux/DataView'); // setting
the uxdataview path
Ext.application({
name: 'MyApp',

Chapter 11

[347]

 requires:['MyApp.view.main','MyApp.view.FilesTreePanel',
 'MyApp.view.FilesView','MyApp.view.FilesGrid',
 'MyApp.view.FilesForm','MyApp.view.TrashContainer'],
 stores:['TreeFiles','Files'],

launch: function() {
 Ext.create('Ext.Window',{
 maximized : true,
 title : 'Drag and Drop',
 autoScroll : true,
 layout : 'fit',
 items:[{
 xtype:'maincontainer'
 }]
 }).show();
 //loading our stores
 this.getTreeFilesStore().load();
 this.getFilesStore().load();
 }
});

In the previous code, we first set the path for the Ext.ux.Dataview package, we
then added our main container and when the window shows we just load our
stores. The final result is a very nice UI with all the drag and drop behavior
between our components:

Drag and Drop

[348]

Enhancing our application with drag
and drop
Now that we know how drag and drop works in Ext JS we are going to use these
capabilities in our invoices' application.

In the categories module, we are going to add drag and drop to the invoices' data view,
so we can add our invoices to different categories using the drag-and-drop operation.

In the MyApp.view.invoices.Dataview class, we need to add the methods so when
an invoice item is selected we can drag it to the categories tree panel:

/**
 * @classMyApp.view.invoices.Dataview
 * @extendsExt.view.View
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of the invoices data view component
 */
Ext.define('MyApp.view.invoices.Dataview', {
 extend : 'Ext.view.View',
 alias : 'widget.invoices.dataview',
 store : 'invoices.Invoices',
 emptyText :'No invoices available',
 itemSelector: 'div.invoice',
 frame:false,
 style:{
 backgroundColor:'white'
 },
 mixins: { //drag an drop configuration mixin
 draggable : 'Ext.ux.DataView.Draggable'
 },
 tpl:[
 '<tpl for =".">',
 '<div class="invoice">',
 '<div class="content">',
 '<imgsrc="resources/images/invoice64.png" height="60"
width="60">',
 '</div>',
 '{name}</br>',
 '{[Ext.util.Format.date(values.date)]}',
 '</div>',
 '</tpl>'].join(''),
 initComponent : function(){
 var me = this;
 this.mixins.draggable.init(this, {
 ddConfig: {

Chapter 11

[349]

 ddGroup: 'invoicesDDGroup'
 }
 });
 this.callParent();
 }
});

In the previous code we are using the Ext.ux.Dataview.Draggable plugin as a
mixin, then in the initComponent method we initialize our mixin. Next, we are
going to add another field to our MyApp.model.invoices.Invoice so it behaves
like a leaf in our categories tree:

/**
 * @classMyApp.model.invoices.Invoice
 * @extendsExt.data.Model
 * @author Armando Gonzalez <iam@armando.mx>
 * The invoice model definition
 */
Ext.define('MyApp.model.invoices.Invoice', {
 extend: 'Ext.data.Model',
 fields:[
 {name:'name', type:'string'},
 {name:'date', type:'date', dateFormat: 'm/d/Y'},
 {name:'leaf', type:'boolean'}
]
});

And the response should come like this:

{"id":"3", "name":"Invoice 3", "date":"08/28/2012",leaf:true}

Now we just need to set the path of our Ext.ux.Dataview.Draggable in the
app.js file:

Ext.Loader.setConfig({
 enabled:true
});
Ext.Loader.setPath('Ext.ux.DataView', 'ux/DataView'); // setting the
us dataview path
Ext.application({
 name : 'MyApp',
 appFolder : 'app',
 controllers : [
 'MyApp.controller.main.Main'
],
 autoCreateViewport : true
});

Drag and Drop

[350]

Now we are ready to see our drag and drop in action:

Summary
In this chapter, we have learned how the drag and drop works, now we can do
very easy-to-use apps using this knowledge, we also keep enhancing our invoices'
application and we are getting close to finishing.

Drag and drop is very useful but we need to know exactly when to use it, because if
we are not sure we can make our application less usable.

In the next chapter, we are going to see how we can change the look and feel of our
application using the powerful SASS framework.

Look and Feel
One of the biggest challenges of the Ext applications is to create a specific look and
feel for our own products. It's very common to see many applications with the
default light-blue theme. This is because in the previous version of Ext JS, there was
not an easy way to customize or create themes that match our own branding colors
and design guidelines.

With the latest version of Ext we are able to change the colors, gradients, fonts, and
even dimensions of margins and padding of all the visual components. We can even
create different styles for the same component using the ui property.

In this chapter we are going to learn how we can create our own themes. We will
create a theme for our main application that we have been working on over the
previous chapters. We will completely change the default theme to fit our needs.

We will be covering the following topics in this chapter:

• Compass and SASS
• Advanced theming
• Different styles on the same component
• Supporting legacy browsers

Setting up our environment
Before we start coding our new theme we need to install some tools. These tools will
help us to write our first theme for Ext JS 4. We are going to use Compass and SASS
to write our CSS code and bring some life to our application.

Look and Feel

[352]

Compass (http://compass-style.org/) allows us to write easy and maintainable
CSS code, we can use variables, conditional statements, mixins (similar to functions
or macros), some basic math calculations, and many more awesome things. Once we
have our Compass code we can compile it and generate a compressed CSS file with
all the resulting CSS code.

In order to use Compass we need to install Ruby. Ruby is a very dynamic and
popular language among web developers. Don't worry if you are not familiar with
it, in fact we are not going to write any line of code at all, we are going to write only
CSS code with the help of Compass.

Let's download and install Ruby. If you are using Windows, you can use the
RubyInstaller. This is the easier way to get ready with Ruby. We can find the Ruby
installer at http://www.ruby-lang.org/en/downloads/. If you are using Mac, you
need to install XCode to install Ruby and all its dependencies. Also, you can use the
RVM project to install any version of Ruby in the same machine, this also works for
Linux systems.

At the time of this writing the latest version of Ruby is Version 1.9.3-p194, but
Version 1.8.7 should work too. Once we have Ruby installed in our environment, we
need to add it to the PATH, let's open a terminal and type the following command:

$ruby -v

This command should give us the version of our Ruby installation. We should see
something as shown in the images of the following screenshot:

The previous screenshot shows the Ruby version on Mac and Windows platforms. As
mentioned before the default version of Ruby on Mac should work for this chapter.

Ruby comes with a package management tool called gem. We are going to use
this package manager to install Compass. In our terminal we only need to run the
following command:

$gem install compass

Chapter 12

[353]

This command downloads and installs the required software and its dependencies;
in this case Compass uses SASS. We can see the version of the installed software by
running the following commands:

$compass -v

$sass -v

If everything goes fine, we should see the version of the two gems installed in our
system. Now we are ready to start working on our theme.

Avoid using the SASS Version 3.1.4 because this version
contains issues with performance and sometimes the
compilation time takes minutes instead of seconds.

The resources folder
In Chapter 1, The Basics, we learned about the folders that come with the Ext library
the first time we download and extract the framework. Inside the resources folder
we have all the styles and images that are required for the default theme. We also
have all the compass files to start creating our theme.

Before we start coding and modifying our styles we need to prepare our project to
be able to compile the compass files. First we need to copy the sass folder located
at extjs-4.1.0/resources/themes/templates/resources to our resources
folder in our project. The folder structure for our project should look like the
following screenshot:

Look and Feel

[354]

Inside the sass folder we have a Ruby configuration file and a Compass file. We are
going to use these files a bit later.

We are almost ready to start, but before that we need to duplicate the ext4 folder
located at extjs-4.1.0/resources/themes/stylesheets. In this case we will set
the name of the new folder to mytheme, but we can use any name as shown in the
following screenshot:

In this new folder we have all the required CSS code to generate a new theme. Now
we need to start modifying the styles of this folder in order to create a new look and
feel for our theme.

Finally, we need to configure the PATH where the files of our new theme are. Let's
open the resources/sass/config.rb file and change the line number two for the
correct path where the Ext library is located:

$ext_path: This should be the path of the Ext JS SDK relative to this
file

$ext_path = "../../../extjs-4.1.0"

sass_path: the directory your Sass files are in. THIS file should also
be in the Sass folder

Generally this will be in a resources/sass folder

<root>/resources/sass

sass_path = File.dirname(__FILE__)

Chapter 12

[355]

css_path: the directory you want your CSS files to be.

Generally this is a folder in the parent directory of your Sass files

<root>/resources/css

css_path = File.join(sass_path, "..", "css")

output_style: The output style for your compiled CSS

nested, expanded, compact, compressed

More information can be found here http://sass-lang.com/docs/yardoc/
file.SASS_REFERENCE.html#output_style

output_style = :compressed

We need to load in the Ext4 themes folder, which includes all its
default styling, images, variables and mixins

loadFile.join(File.dirname(__FILE__), $ext_path, 'resources', 'themes')

The ext_path variable contains the path where our Ext library is; we need to set this
path accordingly. In our case Ext is located three levels above the config file, but this
will depend on our folder structure.

Now we need to load our duplicated folder, the one that we are going to modify.
Let's open the resources/sass/my-ext-theme.scss file and change the line
number eight as follows:

// Unless you want to include all components, you must set $include-
default to false

// IF you set this to true, you can also remove lines 10 to 38 of this
file

$include-default: false;

// Insert your custom variables here.

// $base-color: #aa0000;

@import 'mytheme/default/all';

We use mytheme folder to hold all the Compass files for our new theme. If we use a
different name for the folder that we duplicated previously, we just need to make
sure this path is configured accordingly.

The $include-default variable allows us to include the styles of all components by
setting it to true. This way we can remove all the mixin calls that we have in this file
starting at line number 10.

Look and Feel

[356]

Now let's compile our theme to check if everything is working. Let's open our
terminal and go to the resources/sass/ folder. In here we need to run the
following command:

$compass compile my-ext-theme.scss

If everything goes fine, a resources/css/my-ext-theme.css file should be
created when compiling our theme. This file contains a compressed version of
our new theme.

We can also configure the output of this file to be expanded; this is a good idea
for a development environment since we can read it easily. Let's modify our
resources/sass/config.rb file at line number nine. In there we can set how
we want the output of the resulting CSS file. We will expand this file only
for development. For a production environment we need to compress this file.

In order to test our new theme we need to modify the HTML code to import the
resulting CSS file instead of the default theme:

<!DOCTYPE HTML>
<html manifest="" lang="en-US">
<head>
<meta charset="UTF-8">
<title>Application</title>
<linkrel="stylesheet" href="resources/css/my-ext-theme.css" />
 <linkrel="stylesheet" href="resources/css/style.css"/>

<script type="text/javascript" charset="utf-8" src="http://cdn.sencha.
io/ext-4.1.0-gpl/ext-all-debug.js"></script>
<script type="text/javascript" src="app.js"></script>
</head>
<body>

</body>
</html>

Chapter 12

[357]

Because we have replicated the default light-blue theme folder, our compiled
theme is the same, but now we are ready to start modifying the code to create
our new theme.

Variables
The new way to create themes is just awesome. There are a lot of variables that we
can change to customize our theme, variables for colors, fonts, margins, borders, and
many more things.

In Compass we can define variables using the dollar ($) sign. Every time we find a
word that starts with the dollar sign it means that it's a variable that we can read or
assign a value. The following lines of code are some examples of variables:

$background-color: #f3f3f3;
$font-size: 1.5em;
$header-height: 45px;
$custom-text: 'This is a text value';

As shown in the previous code we can assign a value using the colon (:), we can also
use colors, sizes, or texts as values. We need to use a semicolon(;) every time we end
a statement.

By default, Ext has defined a lot of variables for us, we can see all the available
variables in the folder extjs-4.1.0/resources/themes/stylesheets/mytheme/
default/variables. We have many files in here, you can see the name of some
components in these files, that's because all the variables used for a component are in
that respective file.

We are also going to find a file called _core.scss, this file contains many generic
variables, for example the base color, base font, base type of gradient, and so on. We
can change the value of each variable in here, but it's recommended to overwrite the
value of every variable in our my-ext-theme.scss file, as follows:

// Insert your custom variables here.
$base-color: #4485ab;

Look and Feel

[358]

Now, if we compile our theme again we will see that the base color of our
components has changed as shown in the following screenshot:

We have a different blue, just by changing a variable we have changed the color for
all of our components. We can use any color we want depending on our design. We
can start playing around with all the variables and see how our theme will change.

Advanced theming
In the rest of this chapter we are going to see common situations where we need
to modify the original code from the original theme. We will create new gradients,
change dimensions, paddings, colors, and custom UIs.

Adding new gradients
Let's start by defining a new gradient for the toolbar component. We already have a
few available styles of gradients defined in the default theme, such as matte, glossy,
and bevel. We can use any of the available gradients, but most of the time these
gradients are not enough or maybe we need something different.

Chapter 12

[359]

In order to create a new gradient we need to open the file located at extjs-4.1.0/
resources/themes/stylesheets/mytheme/default/mixins/_background-
gradient.scss. In here we have all the available gradients. Let's define a new
gradient as follows:

//...

} @else if $type == glossy-button-pressed {
 @include background-image(linear-gradient($direction, color_stops(
 $bg-color,
adjust-color($bg-color, $hue: -1.839deg, $saturation: -2.18%,
$lightness: 2.157%) 48%,
adjust-color($bg-color, $hue: -2.032deg, $saturation: 37.871%,
$lightness: -4.706%) 52%,
adjust-color($bg-color, $hue: -1.641deg, $saturation: 36.301%,
$lightness: -2.549%)
)));
} @else if $type == toolbar-blue{ //Step 1
 @include background-image(linear-gradient($direction,
#4486ac,#396e8e)); //Step 2
}

After the preceding gradient definition (glossy-button-pressed) we will add a
new one called toolbar-blue.

First we use an else if condition to check if the $type variable is equal to
toolbar-blue.

In the second step we use the background-image and linear-gradient mixins
to define our new gradient. We use only two colors for our gradient hardcoding
the two colors, but we can also use variables if we need. For now we will leave the
hardcoded colors.

We can use the @if statement to make a condition. We can
also use the @else if statement to define the false actions
of the previous conditions. This is Compass syntax for
conditions and it is very useful.

Look and Feel

[360]

Once we have defined our new gradient we need to use it as the background for our
toolbar. If we go to the _toolbar.scss file located at extjs-4.1.0/resources/
themes/stylesheets/mytheme/default/variables, we will find all the variables
for the toolbar component. The variable that we need to modify with our own
gradient is $toolbar-background-gradient. Let's assign a new value in our my-
ext-theme.scss file:

// Unless you want to include all components, you must set $include-
default to false
// If you set this to true, you can also remove lines 10 to 38 of this
file
$include-default: false;

// Insert your custom variables here.
$base-color: #4485ab;

//Toolbar component
$toolbar-background-gradient:toolbar-blue;

Now let's compile our theme again using the command line:

$ compass compile my-ext-theme.scss

If we refresh our browser, we will see the changes applied in our main toolbar. The
following screenshot shows the results of our modifications:

We have a nice gradient, now let's add one small detail to make it look really great.
We are going to change the color of the border to a light blue color:

//Toolbar component
$toolbar-background-gradient:toolbar-blue;
$toolbar-border-color:#7caac4;

Chapter 12

[361]

We have another variable that defines the color of the border for the toolbar called
$toolbar-border-color. We can find this variable in the same file that we opened
before. Let's compile our theme again and see the results in our browser as shown in
the following screenshot:

Adding this little pixel to our toolbar really improves the look and feel of our
component; small details are always worthwhile and make a huge difference.

We are almost done with our main toolbar. Let's add more vertical space, this will
make our toolbar a little bit larger vertically. In order to do this let's find the right
variable in the _toolbar.scss file that we have already opened:

//margins
$toolbar-horizontal-spacing: 2px;
$toolbar-vertical-spacing: 4px;
$toolbar-footer-horizontal-spacing: 6px;
$toolbar-footer-vertical-spacing: 4px;

//border
$toolbar-border-color: $panel-body-border-color !default;

We are going to change the value of these variables in this file because they don't
contain the !default rule. The !default rule allows us to override the original
value, but if the variable doesn't have this rule, we can't override the value in our
my-ext-theme.scss file.

If we compile our theme again, we will see how our toolbar height has increased a
little bit more than before.

Look and Feel

[362]

Styles for the tabs
Now, let's start working with the tabs. This will require a little more extra work,
but the result will look really great. Let's start by creating two more gradients in the
same file, where we already defined the gradient for the toolbar:

//...

} @else if $type == toolbar-blue{
 @include background-image(linear-gradient($direction,
#4486ac,#396e8e));

} @else if $type == tabbar-blue{
 @include background-image(linear-gradient($direction,
#55a7d5,#4d96c1));

} @else if $type == tab-active-white{
 @include background-image(linear-gradient($direction,
#fefefe,#e6e6e6));
}

The first gradient will be used for the background of the tab bar, and the second
gradient will be used for the active tab background.

Once we define these two gradients let's open the _tabs.scss file located in the
variables folder, where all the components' configurations are. This file contains
all the available variables for the tab panel. We are going to use 12 variables from
here. In our my-ext-theme.scss file we will override the following variables for
the tab panel:

//...

//Toolbar component
$toolbar-background-gradient:toolbar-blue;
$toolbar-border-color:#7caac4;

//Tabs component
// Step 1 - define the background gradient for the tab bar
$tabbar-background-gradient:tabbar-blue;
$tabbar-border-color:#88c1e1;

//Step 2 - change the color for the border and the background
// of the bottom strip of the tab bar
$tabbar-strip-border-color:#e6e6e6;
$tabbar-strip-background-color:#e6e6e6;

//Step 3 - define the styles for the inactive tab
$tab-height:22px;
$tab-background:null;

Chapter 12

[363]

$tab-background-gradient:null;
$tab-inner-border:false;
$tab-border-color:transparent;
$tab-color:#fff;

//Step 4 - define the styles for the active tab
$tab-background-gradient-active:tab-active-white;
$tab-color-active:#000;

First we define the background gradient for the tab bar. We use the gradient
that we already defined in the previous step. We will also add a light-blue color
to the border; this small detail will make the bar stand out and it will make it
look beautiful.

In the second step we change the color for the border and the background of the
bottom strip of the tab bar. We use a gray color because our active tab will be a
gray gradient.

In the third step we define the styles for the inactive tab. When the tab is not active,
we will remove the background and make it transparent. We will also remove the
borders and set the color of the font to white.

In the last step we define the styles for the active item. We set the background of the
tab to use the gray gradient, which we already defined before, and we set the font
color to black:

The previous screenshot shows the result of the changes that we made to our theme.
It's looking good, but there are a few issues that we need to fix.

Even if we define the background color as null, the background of the tab is getting
some ugly blue color. We need to remove that, but unfortunately, we don't have
another way to do it but changing the code from the source.

Look and Feel

[364]

We already know where the variables are located; in that same folder we will find
another folder called widgets. In here we will find all the code for each of the
available widgets on the framework. Each component is in a file, this allows us to
modify the CSS code for each component easily. Let's open the _tab.scss file:

/**
 * @classExt.Tab
 */
@mixinextjs-tab {
 @include x-frame(
 $cls: 'tab',
 $ui: 'default-top',
 $border-radius: $tab-top-border-radius,
 $border-width: $tab-top-border-width,
 $background-color: null,//$tab-base-color,
 $background-gradient: $tab-background-gradient,
 $background-direction: top,
 $table: true
);

On line number nine we can see that the background for the tab is getting the value
of the $tab-base-color variable. If we want to make it transparent, we should
pass a null value in this configuration of the x-frame mixin. We can also try to set
a transparent value to the variable, but we will get some errors when compiling our
theme because one of the mixins will try to calculate a lighter color based on this
value. So the only way to solve this is by setting a null value.

Let's compile our theme and see the result in our browser; the following screenshot
shows the results of our changes, as we can see the issues are solved:

Chapter 12

[365]

Now our tabs are looking really good. We are almost done, but before moving
forward let's add a box shadow to the active tab and hide the close button of the
inactive tabs. We are going to show the close button only in the active tab.

In order to hide the close button we need to find the rule where the style for this
element is being set, around the line number 366, in the _tab.scss file, located
at extjs-4.1.0/resources/themes/stylesheets/mytheme/default/widgets.
We will find the class that sets the styles. In here we are going to hide the element
as follows:

.#{$prefix}tab-close-btn {
position: absolute;
top: $tab-closable-icon-top;
right: $tab-closable-icon-right;
width: $tab-closable-icon-width;
height: $tab-closable-icon-height;
font-size: 0;
line-height: 0;
text-indent: -999px;
background: no-repeat;
background-image: theme-background-image($theme-name, $tab-closable-
icon);
 @include opacity(.6);
display:none;
 }

Use the DOM inspector to find the CSS class that is adding the
styles to the element that we want to modify. Google Chrome is
great for this; we can also use Firebug if we use Firefox to develop.

By using the display:none rule we hide the close button; now we need to show
this button only for the active tab. Let's add the following code that will follow
our previous example:

.#{$prefix}tab-active{

.#{$prefix}tab-close-btn{ //step 1
display:block;
 }
 @include box-shadow(rgba(0,0,0,0.8) 0px 0px 5px); //Step 2
 }

Inside the active tab we show the close button using the display:block rule, this
will show the element.

Look and Feel

[366]

In the second step we use the box-shadow mixin to add a shadow to the active tab.

Let's compile our theme again and see the results in our browser. The following
screenshot shows our latest changes:

Now our tabs are looking really good. We have been changing some variables, we
have also added and modified some CSS code to achieve this beautiful look and feel.

There's still one small detail that we need to fix. There's a blue line at the bottom of
the tabs. This line looks really bad, we need to remove that line from there! If we
inspect the DOM using the developer's tool from Google Chrome or Firebug, if we
are in Firefox, we will notice that that line is on the body content of the tabs. We will
see that specific DOM node doesn't contain any CSS class related to the tab panel, it
is just a node with a few classes that are very generic. If we modify one of those CSS
classes, we will change the look for all of our panels and container components and
we don't want to do that, we only need to affect that specific element.

The easiest way to do it is to modify our JavaScript file and remove the border for
that specific component. We will do this because we can't do it without changing
everything that uses this stylesheet. Let's open our main Viewport class and add the
following lines of code:

Ext.define('MyApp.view.Viewport',{
extend : 'Ext.container.Viewport',

 //...

initComponent : function(){
var me = this;

me.items = [{

Chapter 12

[367]

 //...

 items : {
 xtype : 'tabpanel',
 itemId: 'maintabs',
 border: false,
 hidden: true,
bodyBorder:false
 }
 }];

me.callParent();
 }
});

Just by adding the bodyBorder property and setting it to false, we can get rid of
that ugly border. If we refresh our browser, we will see how nice our tabs are looking
as shown in the following screenshot:

Styling the panel
Let's change the styles of our panels. We are going to define a gray header. We will
use the same gray color that we have in our tab panel. We are also going to remove
the gradient and use a plain gray.

Look and Feel

[368]

If we open the file where all the variables for the panel are, we will find the variables
that we need to modify. Let's redefine their value in our main theme file by adding
the following code:

//Panel
$panel-header-background-gradient:null;
$panel-header-background-color:#e6e6e6;
$panel-header-color:#000;
$panel-header-border-color:null;

First we remove the gradient of the header by setting a null value to the right
variable, then we set a flat color as the background of the header. We are using the
same gray color from the tab component.

We are also setting the font color to black and removing the borders from the header
by setting the border color property to null.

If we compile our changes, we will notice that there's still a border showing up and
it looks really bad, it breaks our design. In order to get rid of it we need to make
some changes in the original CSS code. Let's open the _panel.scss file located at
extjs-4.1.0/resources/themes/stylesheets/mytheme/default/widgets. In
here we have all the CSS code that is used in the panel component.

If we scroll down to line number 244, we will find the following code:

@if $ui-header-inner-border-color == null and $ui-header-background-
color != null {
 $ui-header-inner-border-color: lighten($ui-header-background-color,
10);
}

The inner border color is getting its value from the background color. To get rid of
the border we need to set the color of this variable to transparent. Let's change the
code as follows:

@if $ui-header-inner-border-color == null and $ui-header-background-
color != null {
 $ui-header-inner-border-color: transparent;
 }

Chapter 12

[369]

Now, if we compile our Compass code again, we will see the following screenshot
as a result:

That's all for the panels! Now let's change the color of the blue spacebar that divides
the grid and form. If we inspect the DOM, we will find out that the color is not being
set on the bar, this bar is transparent. So if we want to change the color, we need to
change the background color of the main container. Let's open the _layout.css file
to see if we can find a variable to change the background color of the container in an
easy way.

$border-layout-ct-background:#e6e6e6;

Unfortunately, this is just the way it is right now. It
might be easier with a fully developed theme, but even
the one that comes with Ext JS 4 does not have complete
SASS coverage so that leaves some work to get things
just as you might want them. It is possible to add your
own SASS rules and variables in the CSS code also, if you
are interested in expanding it yourself.

Look and Feel

[370]

By adding the previous line of code to our main theme we can change the
background color of the border layout that we are using, this is all we need to
do. Let's compile our project again and we will see the results as shown in the
following screenshot:

Now we have a good looking theme. We have changed the default colors and created
a completely different theme.

Different styles for the same component
It's very common to have different styles of buttons, windows, panels, or any other
component. For example, in our application we can define a different style for the
main top toolbar and different styles for the other toolbars that are inside the panels
in our forms or anywhere else.

In such cases the ui property shines. Every widget defines a ui property, which
contains a prefix for the CSS classes. This way we can define specific classes for every
component. Let's modify our JavaScript code and define a ui property for our main
toolbar. The main toolbar is defined in the Viewport class. Let's open that file and
add the following code:

Ext.define('MyApp.view.Viewport',{

 //...

initComponent : function(){
var me = this;

me.items = [{
 xtype : 'panel',

Chapter 12

[371]

 layout: 'fit',
 dockedItems : [{
 xtype : 'toolbar',
 docked: 'top',
 itemId: 'mainmenu',
ui : 'maintoolbar',
 items : [

 //...

]

 }],
 items : {
 xtype : 'tabpanel',
 itemId: 'maintabs',
 border: false,
 hidden: true,
bodyBorder:false
 }
 }];

me.callParent();
 }
});

Once we define the new ui property for our main toolbar we need to create that
ui in our CSS code. Let's open the _toolbar.scss file located at extjs-4.1.0/
resources/themes/stylesheets/mytheme/default/widgets.

In this file we will find around line number 116 a call to a mixin called extjs-
toolbar-ui. A mixin is like a function to which we can pass parameters and
generate different results. In this case the mixin receives four parameters, but other
components such as panels or buttons receive a bunch of parameters because we can
modify a lot of things.

For this example we will call the mixin again but with different parameters for
our specific ui. Let's add the following code after the first call of the mixin that is
already defined:

@includeextjs-toolbar-ui(
 'maintoolbar',
 $background-color: $main-toolbar-background-color,
 $background-gradient: $main-toolbar-background-gradient,
 $border-color: $main-toolbar-border-color
);

Look and Feel

[372]

In Compass we call a mixin using the @include word. In this case we called an Ext
mixin, but Compass comes with many more mixins for creating gradients, shadows,
and many more CSS3 goodies.

The first parameter will define the ui name; this parameter will be the prefix for the
resulting CSS classes. We are using the same text that we use in the JavaScript file.

The other parameters define the background color, the gradient that we are going to
use, and the border color. It's important to note that we are defining new variables in
here, so let's define those variables in our main theme file:

//Toolbar component UI
$main-toolbar-background-gradient:toolbar-blue;
$main-toolbar-background-color:null;
$main-toolbar-border-color:#7caac4;

$toolbar-background-gradient:null;
$toolbar-background-color:#e6e6e6;
$toolbar-border-color:#e6e6e6;

The previous code defines the styles for our new toolbar ui. We are also setting
a gray color for the default toolbars. If we compile our theme, we will get some
warnings because the new ui is looking for some images that don't exist yet. For
now we will ignore it. Let's refresh our browser to see the changes as shown in the
following screenshot:

Now we have two toolbars with really different looks! We can create as many UIs as
we need. Some components require a lot more variables, but the process of creating a
new UI is the same as we did here.

Chapter 12

[373]

Supporting legacy browsers
So far we have created our theme that looks perfect on most of the modern browsers
such as Google Chrome, Firefox, Opera, and Safari, but the chances are that we want
to support Internet Explorer, maybe from version 7 or 6. If at this moment we open
our application using IE, the theme won't work well because IE doesn't support
many of the new goodies of CSS3:

In order to make our theme work on IE we need to use images instead of CSS3
gradients. We can create all the required images manually using our favorite image
editor software or we can create them automatically using the Sencha tools.

Even if we create the images automatically using the Sencha
command, we usually need to retouch some of those images
to make it look right.

Let's download and install the Sencha SDK Tools (http://www.sencha.com/
products/sdk-tools/). With these tools we can generate all the required
images automatically.

Before we generate the images let's copy all the images from extjs-4.1.0/
resources/themes/images/gray to resources/images. We also need to configure
the location of where the images will be taken; right now the images are taken from
the default Ext theme library. If we want to change that, we need to open the utils.
rb file located at extjs-4.1.0/resources/themes/lib. Now let's replace line
number 62 as shown in the following code:

#images_path = File.join($ext_path, 'resources', 'themes', 'images',
theme)
images_path = relative_path

Look and Feel

[374]

We are just commenting out the URL for the images and setting a relative path. This
relative path contains the resources/images URL from our main project.

If we again compile our CSS code, we will have a new CSS file that uses the images
that we have in our own project instead of the default Ext theme. Now let's run the
following command in the root folder of our application to generate the images for
our new theme:

$ sencha slice theme -d ../extjs-4.1.0 -c resources/css/my-ext-theme.css
-o resources/images –v

The –d parameter defines the location of the Ext library. We need to make sure to
point to the right path where the Ext is located, otherwise we will get some errors.

The –c parameter defines the CSS file of our new theme.

The –o parameter is the output folder, where the generated images will be placed.
Keep in mind that the images that already exist in this directory will be replaced.

The –v parameter allows us to see the progress of process while generating the
images. This parameter is optional.

If everything goes fine, we will get a success message telling us that the images are
getting generated correctly. We are almost done with the theme, but since we define
a new ui property for the main toolbar we need to generate those images too.

In order to generate the images for all the UIs defined, we need to create a manifest
file, where we define all the UIs that we have in our theme. In our example the
manifest file will contain the following code:

Ext.onReady(function() {
Ext.manifest = {
widgets: [
 {
xtype: 'widget.toolbar',
ui : 'maintoolbar'
 }
]
 };
});

We are using the onReady method, then we set the manifest object with all the
widgets that have defined a new ui property. In this example we only have one for
the toolbar component, but if we have more, we can add them to the array.

Chapter 12

[375]

Save this file at the root folder of our application, and then we only need to run the
following command to generate the images for our new UIs:

$ sencha slice theme -d ../extjs-4.1.0 -c resources/css/my-ext-theme.css
-o resources/images -v -m manifest.json

We have added a new parameter called –m, which defines the location of the
manifest file. When finished all the images for the UIs will be generated. Now let's
refresh Internet Explorer and see how our new theme looks in this old browser as
shown in the following screenshot:

We are having some issues with the tabs, this is because we set the borders to
transparent and the images are not getting generated correctly. We need to use an
image editor to fix these images, unfortunately these are just some of the kinks we
have to work through with the way Ext JS theming is set up right now. Overall it's
still far easier to do it this way than theming by hand.

We can use the DOM inspector to see exactly the images that we need to fix.
The DOM elements that are rendered on Internet Explorer are different from
the nodes on the modern browsers; this is because we need to place the images
at specific locations.

Look and Feel

[376]

Once we finish fixing the required images we will be able to see our beautiful
theme across all the browsers. The final theme should look as shown in the
following screenshot:

We can find a great post in the Sencha's blog about the slicer
tool at http://www.sencha.com/blog/using-CSS3-
in-every-browser/.

Summary
In this chapter we learned how to create beautiful themes. We can create very
complex designs and even completely change the default look and feel of the default
Ext library. We shouldn't be afraid to modify the original Compass files to fit our
needs, we can create our own mixins or define new variables, we are free to change
all that we need.

One of the greatest things about this version is the way we can create a theme, using
the ui property we can have as many different components as we need.

In the next chapter we will learn about the drawing package of the library and how
to create awesome charts to visually represent reports to our users.

From Drawing to Charting
The Ext JS 4 framework offers a complete drawing library used on the chart
components. However, the Sencha team did not only focus on the charting
components, they decided to implement a more versatile set of tools that are
the core of the charting library.

This means that we can use the drawing package to implement cross-browser custom
graphics. The drawing package contains a Surface class that abstracts the graphics
implementation and enables the developer to create arbitrarily shaped sprites that
respond to the user; it also provides a rich set of animations.

The topics we are going to cover in this chapter are as follows:

• Basic drawing
• Adding interactions
• Charts

 ° Legend
 ° Axis
 ° Gradients
 ° Series
 ° Theming

From Drawing to Charting

[378]

• Series examples
 ° Area
 ° Bar
 ° Line
 ° Pie
 ° Radar
 ° Scatter
 ° Gauge

• Enhancing our application with charts

Basic drawing
First we need to know that the implementations of the Surface class are SVG
(for SVG capable browsers) and VML (for the Internet Explorer family that does
not support SVG). Most of the methods and ways to create sprites are inspired by
the SVG standard.

In the following example we are going to draw some shapes inside Ext.Window and
will learn how the drawing package works.

First we are going to define our view:

/**
 * @class MyApp.view.DrawingSurface
 * @extends Ext.draw.Component
 * @author Armando Gonzalez <iam@armando.mx>∫
 * This is the drawing component of the basic drawing example
 */
Ext.define('MyApp.view.DrawingSurface', {
 extend : 'Ext.draw.Component',
 alias : 'widget.drawingsurface',
 items : [{
 type: 'circle', //this will draw a circle
 fill: 'blue',
 radius: 50, //the radius of our circle
 x: -150, //the x position of the circle
 y: 60 //the y position of the circle
 },{
 type: 'rect', //this will draw a rectangle
 width: 100,
 height: 100,
 radius: 10, //border radius
 fill: 'green', //the fill color of the shape

Chapter 13

[379]

 opacity: 0.5,
 x: -120,
 y: 0,
 stroke: 'red', //the stroke color
 'stroke-width': 2
 },{
 type: "ellipse",
 radiusX: 80,
 radiusY: 50,
 opacity: 0.8, //the opacity of the sprite
 x: 50,
 y: 60,
 fill: 'red'
 },{
 type: "path",//svg
 path: "M 230 0 L 300 0 L 265 100 z", //a triangle
 opacity: 0.9,
 fill: "green"
 },{
 type: "text",
 text: "Text!",
 fill: "black",
 x: -50,
 y:-50,
 font: "18px monospace"
 },{
 type: "image", //this will sprite an image
 src: "http://www.sencha.com/img/apple-touch-icon.png",
 width: 200,
 opacity: 0.9,
 x: 120,
 y: 0,
 height: 100,
 width: 100
 }]
});

In the previous code we are defining Ext.draw.Component that contains the six
Ext.draw.Sprite available classes in the Ext JS library:

• Circle: To draw circles, you can set the radius in the radius
property configuration.

• Rect: To draw rectangles, the width and height configurations are set in the
width and height properties.

• Text: To render text as sprite, the font/fontsize can be set using the
font property.

From Drawing to Charting

[380]

• Path: This is the most powerful sprite type. With this type you can create
arbitrary shapes by using the SVG path syntax.

• Image: This type renders an image as sprite; you can set the source path of
the image in the src property.

• Ellipse: To draw ellipses, you can set the radius in the radiusX and
radiusY properties.

A sprite is an object that is rendered in a drawing surface. The object properties'
configurations are as follows:

• type: This property is used to define the type of the sprite. Possible options
for the type property are circle, path, rect, text, ellipse, image.

• width: This property is used in rectangle and image sprites for defining the
width of the rectangle or image.

• height: This property is used in rectangle and image sprites for defining the
height of the rectangle or image.

• radius: This property is used in circle sprites for defining the radius of
the circle.

• radiusX: This property is used in ellipses for defining the x-axis radius of
the ellipse.

• radiusY: This property is used in ellipses for defining the y-axis radius of
the ellipse.

• x: This property defines the position along the x-axis.
• y: This property defines the position along the y-axis.
• path: This property is used in path sprites for defining the path of the sprite

written in SVG-like path syntax.
• opacity: This property is used to define the opacity of the sprite.
• fill: This property defines the fill color.
• stroke: This property defines the stroke color.
• stroke-width: The width of the stroke.
• font: This property is used with text type sprites. This gives the full font

description. It uses the same syntax as the CSS font parameter.
• text: This property is used with text type sprites. It defines the text itself.

Chapter 13

[381]

Now we just need to render the component in a window:

/**
 * This is the main code for the application
 */

Ext.Loader.setConfig({
 enabled:true
});
Ext.application({
 name: 'MyApp',
 requires:['MyApp.view.DrawingSurface'],
 launch: function() {
 Ext.create('Ext.Window',{
 width:630,
 height:318,
 title:'Drawing and charting',
 autoScroll:true,
 frame:false,
 layout:'fit',
 items:[{
 xtype:'drawingsurface'
 }]
 }).show();
 }
});

The following screenshot is the result of the previous basic drawing example:

From Drawing to Charting

[382]

Adding interaction
The Ext.draw.Sprite class is a very versatile class. We can add events, animation,
and add custom behavior to the sprites. The main feature of this class is that we
aren't tied to a specific shape or structure, and it is browser and device agnostic.

In the following example we are going to code a bouncing ball, using the
Ext.Draw.Sprite class power:

/**
 * @class MyApp.view.BouncingBall
 * @extends Ext.draw.Component
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the bouncing ball component
 */
Ext.define('MyApp.view.BouncingBall', {
 extend : 'Ext.draw.Component',
 alias : 'widget.bouncingball',
style:{
 backgroundImage:"url('resources/images/court.jpeg')"
},
 width: 700,
 height: 350,
 ballSize :30,
 afterRender : function(){
 varball,dx = 5, dy = 5, x = 20, y = 100,
 me = this, sound ;

 //Adding some sound to the bouncing ball
 sound = new Audio("resources/sounds/toing.mp3");

 this.callParent(arguments);

 ball = new Ext.draw.Sprite({
 type: 'image',
 src: "resources/images/ball.png",
 height: me.ballSize,
 width: me.ballSize
 });

 me.surface.add(ball); // adding the ball

Chapter 13

[383]

 var runner = new Ext.util.TaskRunner(); //create a runner to
loop the ball
 var task = runner.newTask({ //start a task
 run: function () {
 ball.setAttributes({ //change the ball position
 y : y,
 x : x
 }, true); // the true value redraws tha ball

 if(x < 0 || x >me.width - me.ballSize) { // validation to
change the x direction
 dx = -dx;
 sound.play(); // play the sound
 }
 if(y < 0 || y >me.height - me.ballSize) { // validation to
change the y direction
 dy = -dy;
 }
 y += dy; // change the ball´s position
 x += dx;
 },
 interval: 10 // this goes every 10 milliseconds
 });
 task.start(); // start the task

 ball.addListener('mouseover', function() {
 dx = -dx;//changing the ball direction
 });
 }
});

We have added a Tennis court background image to our drawing surface
component, then we set the size of our drawing surface and the ball size. All the logic
to make the ball bounce goes in the afterRender method. We added some audio
object to produce a bouncing sound when the ball reaches any of the sides, then we
add our ball sprite to the drawing surface.

We are going to use Ext.util.TaskRunner to move the ball around the drawing
surface at an interval of 10 milliseconds. The use of a task is useful for pausing the
bouncing ball. The final step is to add a listener to the ball so when the mouse is over,
the ball changes direction.

From Drawing to Charting

[384]

Once we have the code, we run it and will have the following result, try it!:

Charts
Now that we know how the drawing package works, we are ready to see how the
Ext JS library uses the package capabilities in the chart package.

The chart package is a set of classes that define a chart container to manage axes,
legends, series, labels, tips, cartesian and radial coordinates, and specific series like
Pie, Area, Bar, Radar, Gauge, and so on.

The Ext.chart.Chart class is the main drawing surface for series. It manages the
rendering of each series and also manages how axes are defined and drawn.

Legend
The chart configuration object accepts a legend parameter to enable legend items for
each series and to set the position of the legend as follows:

legend: {
 position: 'left' // possible values are left, top, bottom, right
}

Chapter 13

[385]

Axis
The axis package contains an abstract axis class that is extended by the Axis and
Radial classes. There are axes for categorical information (Category axis) and also
axis for quantitative information like Numeric axis. There is a Time axis that is used
for rendering information over a specific period of time.

Gradients
The charting package also has the power to create linear gradients. The gradients can
be defined as an array of gradient configurations in the Chart object. The following
is a valid configuration:

gradients: [{
 id: 'gradient1',
 angle: 45,
 stops: {
 0: {
 color :'#333'

 },
 100:{
 color :'#DDD'
 }
 }
 },{
 id: 'gradient2',
 angle: 0,
 stops: {
 0: {
 color: '#587'
 },
 20: {
 color: '#FFF'
 },
 100: {
 color: '#333'
}}
}]

From Drawing to Charting

[386]

Series
A series class is an abstract class extended by Line or Scatter visualizations. This
class contains code that is common to these series, like event handling, animation,
shadows, gradients, common offsets, and so on. A series class will contain an array
of items with information about the positioning of each element; it also contains a
shared drawSeries method that updates all positions for the series and then renders
the series.

Theming
We can add custom themes to the charts using the theme property, as shown in the
following example:

Ext.create('Ext.chart.Chart',{
 theme :'custom_theme'
})

A Theme class defines the style of the shapes, color, font, axes, and background of a
chart. The easiest way to create a theme is to create a base set of colors that will base
the theme. This is done in the color property configuration.

 {
 colors: ['#aaa', '#bcd', '#eee']
 }

Another way of creating a theme is setting a base color; the theme will generate an
array of colors that match the base color:

 {
 baseColor: '#bce'
 }

Now that we have seen the main concepts of the chart package, we are going to see
the different series types Ext JS has.

Series examples
The Ext JS charting system is one of the most complete systems for charting; we have
a variety of series we can choose from to use in our applications like area, bar, line,
pie, radar, scatter, gauge, and mixed type series.

Chapter 13

[387]

Area
The stacked area chart is useful when displaying multiple layers of information. In
the following example we are going to see how to use this series type. First we need
to configure a set of data that we'll be using with this example.

All of the series types are populated using stores, so let's start by defining the
data store:

/**
 * @class App.store.Data
 * @extends Ext.data.Store
 * This our data store definition
 * @authore Armando Gonzalez <iam@armando.mx>
 */
Ext.define('MyApp.store.Data', {
 extend: 'Ext.data.Store',
 fields: ['month', 'data1', 'data2', 'data3', 'data4', 'data5',
'data6', 'data7', 'data9'],
 autoLoad: true,
 proxy: {
 type: 'ajax',
 url : 'serverside/data.json',
 reader:{
 type:'json',
 root:'data'
 }
 }
});

The store definition has the field's definition and the proxy definition from where the
data will be requested. Once we have the store definition we are going to define the
stacked area chart component:

/**
 * @class MyApp.view.Area
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Area chart definition
 */
Ext.define('MyApp.view.Area', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.areachart',
 store: 'Data',
 style: 'background:#fff',
 animate: true,

From Drawing to Charting

[388]

legend: {
position: 'right'
},
axes: [{
 type: 'Numeric',
 grid: true,
 position: 'left',
 fields: ['data1', 'data2', 'data3', 'data4', 'data5', 'data6',
 'data7'],
title: 'Number of Invoices',
 minimum: 0
},{
type: 'Category',
position: 'bottom',
fields: ['month'],
title: 'Month of the Year',
label: {
 rotate: {
 degrees: 315
}
}
}],
series: [{
type: 'area',
axis: 'left',
xField: 'month',
yField: ['data1', 'data2', 'data3', 'data4', 'data5', 'data6',
'data7'],
style: {
 opacity: 0.93
}
}]
});

In the previous code we have the stacked chart definition. First we configure the data
store, then we set the legend position to the right. The axes configuration comes next,
here we are setting two axes, a Numeric and a Category axis. The Numeric axis is our
y axis aligned to the left of the drawing surface and has the data it is going to control.
The Category axis renders the months on the bottom of the drawing surface.

Next we have the series definition. Here we have the series type definition and
how the data will be rendered. We have defined the data for yField and the data
for xField.

Chapter 13

[389]

The previous class definition produces the following result:

Bar
The bar chart configuration is very similar to the area chart configuration. These type
of charts are easy to understand, that is why they are commonly used for displaying
categorical data:

/**
 * @class MyApp.view.Bar
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Bar chart definition
 */
Ext.define('MyApp.view.Bar', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.barchart',
 store: 'Data', //store definition
style: 'background:#fff',
animate: true,
legend: {
position: 'right'
},

From Drawing to Charting

[390]

axes: [{
 type: 'Numeric',
 grid: true,
 position: 'bottom', // the axe position
 fields: ['data1', 'data2'], // the mapping data axe
 title: 'Number of Invoices',
 minimum: 0
 },{
 type: 'Category',
 position: 'left', // the axe position
 fields: ['month'], // the mapping data for this axe
 title: 'Month of the Year'
 }],
series: [{
 type: 'bar',
 axis: 'bottom',
 xField: 'month',
 yField: ['data1', 'data2'],
 style: {
 opacity: 0.93
},
 tips: { // adding a tooltip to the chart
 trackMouse: true,
 width: 140,
 height: 48,
 renderer: function(storeItem, item) {
 this.setTitle(storeItem.get('month') + '</br> data1 : ' +
 storeItem.get('data1') + ' views</br>' + ' data2 : ' +
 storeItem.get('data2') + ' views');
 }
 }
 }]
});

Chapter 13

[391]

In the previous code we have changed the axis positions and are only rendering
two sets of data (data1 and data2). The series type has changed to bar type and we
just added a tool tip configuration. So when the user sets the mouse over any bar, it
shows a tooltip with some useful information:

Line
The line chart is very useful when we want to see progression or regression in our
data; in the chart configuration we need to configure the series correctly so we can
get the correct visualization of our data.

/**
 * @class MyApp.view.Line
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Line chart definition
 */
Ext.define('MyApp.view.Line', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.linechart',
 store: 'Data',

From Drawing to Charting

[392]

style: 'background:#fff',
animate: true,
legend: {
 position: 'right'
},
axes: [{
 type: 'Numeric',
 grid: true,
 position: 'left',
 fields: ['data1', 'data2', 'data3'], //the mapping data for
 this axis
 title: 'Number of Invoices',
 minimum: 0
 },{
 type: 'Category',
 position: 'bottom',
 fields: ['month'],//the mapping data for this axe
 title: 'Month of the Year',
 label: {
 rotate: {
 degrees: 315
 }
 }
}],
series: [{ //define a serie for each line
 type: 'line',
 axis: 'left',
 xField: 'month',
 yField: 'data1', // the mapping data
 highlight: { // the highlight behavior
 size: 7
 },
 fill: true, // this line is fill
 markerConfig: {
 type:'cross', //cross type marker
 size: 4,
 radius: 4,
 'stroke-width': 0
 }
},{
type: 'line',
axis: 'left',
xField: 'month',
yField: 'data2',
highlight: {
 size: 7
},

Chapter 13

[393]

markerConfig: {
 type: 'circle', //circle type marker
 size: 4,
 radius: 4,
 stroke-width': 0
 }
}, {
 type: 'line',
 axis: 'left',
 xField: 'month',
 yField: 'data3',
 highlight: {
 size: 7
 },
 markerConfig: {
 type: 'circle',//circle type marker
 size: 4,
 radius: 4,
 'stroke-width': 0
 }
 }]
});

In the previous code we are rendering three sets of data, and now we are using
a line type series. The line series configuration has highlight property to add
some highlight behavior when the user selects a line, we have also configured a
markerconfig property that sets some nice markers to our lines' peaks. The marker
configuration has some attributes configurations that enhance the markers.

The following image shows the line chart in action:

From Drawing to Charting

[394]

Pie
The pie chart visualization is a very common visualization to display quantitative
information for different categories. Like other charts in Ext JS 4, configuring a pie
chart is very fast and simple, we only need to know how the series work in this
type of chart:

/**
 * @class MyApp.view.Pie
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Pie chart definition
 */
Ext.define('MyApp.view.Pie', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.piechart',
 store: 'Data',
 style: 'background:#fff',
 animate: true,
 legend: {
 position: 'right'
 },
 series: [{
 type: 'pie', // pie chart type
 field: 'data1', // the mapping data for this pie
 showInLegend: true,
 highlight: {
 segment: {
 margin: 20
 }
},
 label: { // show the months names inside the pie
 field: 'month',
 display: 'rotate',
 contrast: true,
 font: '18px Arial'
 }
}]
});

Chapter 13

[395]

As we can see, configuring a pie chart is very simple. The label property is where
the month's name configuration goes so each slice of the pie has a label. The pie
configuration code produces the following result:

Radar
The radar chart is very useful when you want to compare different quantitative
values for a constrained number of categories; with this type of chart you can see the
gaps each category has in an interval. Using this type of chart in the Ext JS 4 library
is very straightforward because it's very similar to the line chart. We only need to
change the series type, add the radial axes, and we will have the radar
chart working:

/**
 * @class MyApp.view.Radar
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Radar chart definition
 */
Ext.define('MyApp.view.Radar', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.radarchart',
 style: 'background:#fff',
 insetPadding: 20,
 animate: true,
 store: 'Data',

From Drawing to Charting

[396]

legend: {
 position: 'right'
},
axes: [{ // setting the radial axe
 type: 'Radial',
 position: 'radial',
 label: {
 display: true
 }
 }],
series: [{
 showInLegend: true,
 type: 'radar', // setting the series type
 xField: 'month',
 yField: 'data1',
 style: {
 opacity: 0.4
 }
 },{
 showInLegend: true,
 type: 'radar', // setting the series type
 xField: 'month',
 yField: 'data2',
 style: {
 opacity: 0.4
 }
}, {
 showInLegend: true,
 type: 'radar', // setting the series type
 xField: 'month',
 yField: 'data3',
 style: {
 opacity: 0.4
 }
 }]
});

Chapter 13

[397]

Once we have configured the chart with the radial axe and the series with a radar
type, we have the following result:

Scatter
The scatter chart is a little more complex chart. It is useful when trying to display
and compare more than two variables in the same visualization. These variables can
be mapped into x and y coordinates and also to an element's radius/size, color, and
so on.

/**
 * @class MyApp.view.Scatter
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Scatter chart definition
 */
Ext.define('MyApp.view.Scatter', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.scatterchart',
 style: 'background:#fff',
 animate: true,
 store: 'Data',
 axes: false,

From Drawing to Charting

[398]

 series: [{
 type: 'scatter',
 markerConfig: {
 type: 'circle',
radius: 40,
size: 20
 },
 axis: 'left',
 xField: 'data1',
 yField: 'data2',
 color: '#a00'
 }]
});

We only need to configure the series to scatter type and set the marker configuration
object with the attributes we want in the marker. The scatter example result is
the following:

Chapter 13

[399]

Gauge
Gauge charts are used to show where certain values fall within a given range. We
can configure the maximum and minimum values, and in how many steps we want to
split the label intervals along the gauge.

/**
 * @class MyApp.view.Gauge
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Gauge chart definition
 */
Ext.define('MyApp.view.Gauge', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.gaugechart',
 style: 'background:#fff',
 animate: true,
 store: 'Data',
 axes: [{
 type: 'gauge', // gauge type axe
 position: 'gauge',
 minimum: 0, //minimum value for the gauge
 maximum: 100, //maximum value for the gauge
 steps: 10, // the steps the gauge will have
 margin: -10 // setting a margin to the axe
 }],
 series: [{
 type: 'gauge', // gauge series type
 field: 'data1', // the data we are mapping
 donut: 50, // setting a donut radius
 colorSet: ['#3AA8CB', '#ddd'] // the char color
 }]
});

From Drawing to Charting

[400]

When using Ext JS Gauge charts, it's important to configure the axes correctly with
a minimum value and a maximum value that are directly related with the possible
values the data has; in the previous code we have set a donut property in the series
property so the gauge area render in a donut shape type:

Now that we know how charts and series work in the Ext JS 4 library, we are ready
to add some charts to our invoices application.

Enhancing our application with charts
We are going to add some charts to our invoices application to see how the invoices
are doing each month. First we need to define the store that will populate our chart:

/**
 * @class MyApp.store.invoices.Summaries
 * @extends Ext.data.Store
 * @author Armando Gonzalez <iam@armando.mx>
 * This is the definition of our Invoices summary store
 */
Ext.define('MyApp.store.invoices.Summaries', {
 extend: 'Ext.data.Store',
 fields: ['invoice', 'data1', 'data2', 'data3', 'data4', 'data5',
'data6', 'data7', 'data9'],
 autoLoad: true,
proxy : {
 type : 'ajax',

Chapter 13

[401]

url : 'serverside/invoices/summary.json',
 reader : {
 type : 'json',
 root : 'data'
 }
 }
});

Once we have defined the summaries store, we define the line chart:

/**
 * @class MyApp.view.invoices.LineChart
 * @extends Ext.chart.Chart
 * @author Armando Gonzalez <iam@armando.mx>
 * The Line chart definition for the invoices summary
 */
Ext.define('MyApp.view.invoices.LineChart', {
 extend: 'Ext.chart.Chart',
 alias: 'widget.invoices.linechart',
 store: 'invoices.Summaries',
 style: 'background:#fff',
 animate: true,
 legend: {
 position: 'right'
 },
 axes: [{
 type: 'Numeric',
 grid: true,
 position: 'left',
 fields: ['data1', 'data2', 'data3'],
 title: 'Invoices data',
 minimum: 0
 },{
 type: 'Category',
 position: 'bottom',
 fields: ['invoice'],
 title: 'Invoices'
 }],
 series: [{
 type: 'line',
 axis: 'left',
 xField: 'invoice',
 yField: 'data1',
 highlight: {
 size: 7
 },

From Drawing to Charting

[402]

 fill: true,
 markerConfig: {
 type: 'cross',
 size: 4,
 radius: 4,
 'stroke-width': 0
 }
 },{
 type: 'line',
 axis: 'left',
 xField: 'invoice',
 yField: 'data2',
 highlight: {
 size: 7
 },
 markerConfig: {
 type: 'circle',
 size: 4,
 radius: 4,
 'stroke-width': 0
 }
 },{
 type: 'line',
 axis: 'left',
 xField: 'invoice',
 yField: 'data3',
 highlight: {
 size: 7
 },
 markerConfig: {
 type: 'circle',
 size: 4,
 radius: 4,
 'stroke-width': 0
 }
 }]
});

We need to configure the series of the line chart with the invoices data of our previous
store. Now we are going to add the line chart to the main categories container:

/**
 * @class MyApp.view.categories.MainContainer
 * @extends Ext.container.Container
 * @author Armando Gonzalez <iam@armando.mx>
 *
 * The main container that uses a border layout.
 */

Chapter 13

[403]

Ext.define('MyApp.view.categories.MainContainer',{
 extend : 'Ext.container.Container',
 alias : 'widget.categories.main',
 requires : [
 'Ext.layout.container.Border',
 'Ext.resizer.BorderSplitterTracker'
],

 layout : 'border',

 initComponent : function(){
 var me = this;

 me.items = [{
 xtype : 'container',
 region: 'center',
 style: 'background:#fff',
 layout: 'border',
 items:[{
 xtype : 'invoices.dataview',
 region: 'center'
 },{
 region: 'south', // adding a panel that will contain our
line chart component
 height: 300,
 collapsible : true,
 collapsed:'true',
 itemId: 'sumaries',
 xtype : 'panel',
 title:'Invoices Summaries',
 layout:'fit',
 items:{ // adding the line chart component
 xtype : 'invoices.linechart',
 }
 }]
 },{
 xtype : 'categories.tree',
 width : 300,
 region: 'west',
 split : true,
 collapsible : true
 }];

 me.callParent();
 }
});

From Drawing to Charting

[404]

Now we just need to add the new panel logic to the categories controller. So we can
make our chart component work.

/**
 * @class MyApp.controller.categories.Categories
 * @extends Ext.app.Controller
 * @author Armando Gonzalez <iam@armando.mx>
 *
 * This is the main controller for categories
 */

Ext.define('MyApp.controller.categories.Categories',{
 extend : 'Ext.app.Controller',
 stores : [//the store of our controller
 'categories.Categories',
 'invoices.Invoices',
 'invoices.Summaries'
],
 views : [//the views of our controller
 'categories.CategoriesForm',
 'categories.TreePanel',
 'categories.MainContainer',
 'invoices.Dataview',
 'invoices.LineChart'
],
 refs: [{
 ref: 'treePanel',
 selector: '#categoriesmaintreepanel'
 },{
 ref: 'invoicesSummaries',
 selector: '#categoriesmain #sumaries'
 }],
 init : function(){
 var me = this;
 me.control({
 '#categoriesmaintreepanel #savebtn' : {// we get the save
button reference
 click :me.addTreeNode
 },
 '#categoriesmaintreepanel toolbar #deletebtn':{// we get the
delete button reference
 click :me.deleteTreeNode
 },
 '#categoriesmaintreepanel':{// when a folder is selected
 itemclick :me.onNodeClick
 }
 });

Chapter 13

[405]

 me.getCategoriesCategoriesStore().load();
 me.getInvoicesInvoicesStore().load();
 },
 addTreeNode:function(btn){
 //add tree node logic

 },
 deleteTreeNode:function(){
 //delete tree node logic

 },
 addContent : function(){
 this.container.add({
 xtype : 'categories.main',
 itemId: 'categoriesmain'
 });
 },
 onNodeClick : function(){
 var me = this;
 me.getInvoicesSummaries().expand();
 me.getInvoicesSummariesStore().load();//loading the chart store
 }
});

In the categories controller code we added the summaries panel reference, then
defined the listeners that will fire when the user clicks on a folder node. The logic
when the user selects a node comes next, here we load the summaries store and
expand the chart panel.

When we run the application we get the following result:

From Drawing to Charting

[406]

Summary
The drawing package of the Ext JS 4 library is very powerful. We can do amazing
stuff with it; charts are a clear example of what can be done with it. In this chapter
we have learned how charts, series, and the drawing works in the Ext JS 4 library.
We can now add some nice charts to our enterprise applications, and enhance the
usability of the reports our applications have.

In the next chapter we are going to finish our application and will see the process
of deploying an Ext JS 4 to a production environment. The following chapter is
very important because we are going to see what steps you need to perform when
releasing an Ext JS 4 application in a production environment.

Index
Symbols
$include-default variable 355
01-basics folder

app.js file, creating 13
creating 13
installation.html file, creating 13

A
accordion layout 102, 103
addEvents method 140
addListener method 143, 150
addTreeNode method 313
advanced theming

about 358
new gradients, adding 358-361
panel, styling 367-370
tabs, styling 362-366

Ajax
about 106
used, for acquiring data 106

Ajax proxy
about 126
defining 126

Ajax request 106
alert method 16
alias 53
append method 67
application

dataview, defining for 285, 286
application, Ext JS 4

building 26
data structure 30
enhancing, with charts 400-405

file structure 31
planning 26
wireframes, using 27

App.view.UsersView class 295
Aptana editor

about 20
autocomplete functionality 20
Bundles 20
CSS and HTML validator 20
JavaScript debugger 20
JavaScript validator 20

area chart 387, 388
autocomplete class 19

B
bar chart 389-391
basic drawing

about 378
circles 379
ellipses 380
image 380
path 380
rectangles 379
text 379

bbar property 90
beforerender event 75
border layout 101, 102
build folder 11
builds folder 11
Bundles 20
button

creating 145-147
icons 148

[408]

C
callParent method 141
card layout 93, 94
categories module 29
CellSelectionModel class 219
charts

about 384
axis class 385
gradients 385
legend parameter 384
series class 386
theme property 386
used, for enhancing application 400

checkbox
adding, to tree panel 313, 314

Checkbox class 199
checkbox field 196-198
checked property 306
children property 306
class system

about 33-36
alias 53
classes, mixing 42-49
configurations, handling 49
Jump class, defining 42
post-processors 39
pre-processors 39
simple inheritance 37
singleton class 52
Spin class, defining 43
statics methods 51
statics properties 51

click event 139
client model

defining 208
client module 28
closable property 91
code

writing, for dataview 286, 287
column renderers

about 216, 217
arguments 216

columns 213-215
columns property 161 213
combination method 48
combobox field 188-192

Compass 8, 352
URL 8, 352
using 352

compete method 45
competition program 42
complex dataview 294, 295
components lifecycle

about 71
children, adding to component 82-85
creation phase 72
destruction phase 78
executing 79-82
phases 72
rendering phase 72, 75

config object 34
configurations

about 49
handling, with pre-processors 49-51

confirm method 17
constructor method 34, 44, 140
container property 76
containers

about 82
panel 86
window component 90

Content Delivery Network (CDN) 10
contentEl property 76
controller 253
controller layer 246
control method 255
copy property 306
count method 120
creation phase, components lifecycle

about 72
diagrammatic representation 73
steps 72-75

creditcard function 116
creditcardMessage function 116
CSS and HTML validator 20
CSS file

URL 10

D
data

acquiring, Ajax used 106-110
sending 134-137

[409]

submitting 204-206
data connection

about 208, 283
model, defining for store 208
store, defining 285
store, defining for grid 209, 210
user model, defining 284

data structure 30
dataview

about 283
code, writing for 286, 287
defining, for application 285, 286
events, handling on 287, 288
listeners, adding to 288

dataview file 285
date field 192-195
dateFormat property 111
dateIssued field 111
dateIssued property 134
ddel property 306
define method 34
deleteTreeNode method 313
destroy method 79
destruction phase, components lifecycle

about 78
diagrammatic representation 78
steps 78, 79

different styles, for same components 370,
371, 372

dockedItems property 157
docs folder 11
documentation 9
DOM

about 33
elements, obtaining 62, 63
manipulation 66-69
query 63
working with 61

DomHelper object 67
DomQuery class 64
drag and drop

about 329
application, enhancing with 348
drop zone, hitting 333-337
implementing, between Ext JS

components 338-347
object, making draggable 330-333

Drag Zone
about 306
copy property 306
ddel property 306
item property 306
records property 306
view property 306

drawSeries method 386
drop zone

hitting 333, 334, 335, 336, 337, 338

E
Eclipse editor

about 19
web tools plugin 19

editors, Ext JS 4
Aptana editor 20
Eclipse editor 19
Sencha Architect 22
Sublime Text 2 editor 18
Textmate editor 21

employee class 142
endDrag method 334
event driven development 139, 140, 141, 142,

144
events

handling, on dataview 287, 288
listening 255, 256

examples folder 11
expanded property 306
Ext.AbstractComponent class 71
Ext.Ajax 106
ext-all-debug.js file 12
ext-all-dev.js file

about 12
importing 14, 15

ext-all.js file 12
Ext.button.Button class 145
Ext.Class class 39
Ext.ClassManager object 34
Ext.Component class 71
Ext.container.Container class 82
Ext.container.Viewport component 163
Ext Core layer 10
Ext.createis 34
Ext.create method 250 39

[410]

Ext.data.Connection class 106
Ext.data.Model class 39, 111
Ext.data.reader.Json class 129
Ext.data.reader.Xml class 130
Ext.data.Store class 119
Ext.data.validations object 114, 115
Ext.dd.DD class

about 333
endDrag method 334
onDragDrop method 334
onDragEnter method 333
onDrag method 333
onDragOut method 333
onDragOver method 333
startDrag method 333

Ext.dd.DDTarget class 336
ext-debug.js file 12
Ext.define 34
ext-dev.js file 12
Ext.draw.Sprite class 382
Ext.Element class 62
Ext.form.field.Base class 182
Ext Foundation layer 10
Ext.getCmp method 74
Ext.grid.column.Action type 216
Ext.grid.column.Boolean type 215
Ext.grid.column.Date type 215
Ext.grid.column namespace 213
Ext.grid.column.Number type 215
Ext.grid.column.Template type 215
Ext.grid.Feature class 223
Ext.grid.feature.Grouping 223-227
Ext.grid.feature.GroupingSummary 227-229
Ext.grid.feature.RowBody 230, 231
Ext.grid.feature.Summary 232, 233
Ext.grid.plugin.CellEditing 234-236
Ext.grid.plugin.DragDrop plugin 342
Ext.grid.plugin.Editing 234
Ext.grid.plugin.RowEditing 236, 238
Ext.grid.RowNumberer column 215
Ext JS

about 8
data, submitting 204
Ext Core layer 10
Ext Foundation layer 10
Ext JS 4 layer 10

field container 201
fields 182
form component 173
layers 10
MVC pattern 245

Ext JS 4
about 8
basic drawing 378
CDN, using 10
charts 384
class system 33
commercial license 9
components lifecycle 71
containers 82
data, acquiring using Ajax 106
data, sending 134-137
DOM, working with 61
downloading 9
editors 17
event driven development 139
features 8, 9
GPLv3 license 9
layout system 91
learning-ext-4 folder, creating 12
loader system 54
look and feel 351
main menu, invoice management

application 162
menus, adding 151
simple button 145
toolbars 156

Ext JS 4 layer 10
Ext JS application

appFolder configuration 247
controller 253, 254
controller folder 249
controllers configuration 247
creating 246-249
enhancing, with drag and drop 348, 349
events, listening 255-257
model folder 249
modules, opening 257-262
view folder 249
views 250-253

ext.js file 12
Ext.menu.Item class 152

[411]

Ext.menu.Menu class 152
Ext.Msg object 15
Ext.onReady function 14
Ext.panel.Panel class 86
Ext.panel.Tool class 88
ext_path variable 355
Ext.selection.CellModel model 218
Ext.selection.RowModel model 218
Ext.Template 289
Ext.toolbar.Fill class 168
Ext.tree.Panel class 299
Ext.util.Observable base class 140
Ext.view.View class 283
Ext.widget 34
Ext.XTemplate class 283, 291

F
fadeOut method 63
fail event 140
Field class 182
field configurations, tree nodes

about 305
checked 306
children 306
expanded 306
iconCls 306
leaf 306
root 306
text 306

field container 201-203
field property 114
field structure 182
files, Ext JS 4

ext-all-debug.js file 12
ext-all-dev.js file 12
ext-all.js file 12
ext-debug.js file 12
ext-dev.js file 12
ext.js file 12

file structure 31
fireEvent method 141
Firefox 373
firstChild.data property 109
fit layout 92, 93

folders, Ext JS 4
build folder 11
builds folder 11
docs folder 11
examples folder 11
jsbuilder folder 11
locale folder 11
resources folder 12
src folder 11
welcome folder 12

form component
about 173
Address field, adding 178-181
HTML file, creating 175, 176
JavaScript file, creating 174
working on 174, 175

G
gauge charts 399, 400
gem 352
getCmp method 74
getSelection method 219
getSelectionModel method 313
Google Chrome 373
grid

about 207, 283
store, defining for 209, 210

grid features
about 223
Ext.grid.feature.Grouping 223-227
Ext.grid.feature.GroupingSummary

 227-229
Ext.grid.feature.RowBody 230, 231
Ext.grid.feature.Summary 232, 233

grid listeners 220-223
grid panel

labout 208-212
paging 239, 240

grid tree panel 315, 318

H
hasMany property 117
hbox layout 95-98
hidden property 77

[412]

I
iconCls property

about 306
using 147, 149

idInvoice field 111
idInvoice property 134
infinite scrolling grid 241-243
inheritance 37-39
initComponent function 74, 344
installation.html file

about 13, 14
creating 13

interaction
adding 382

Internet Explorer 373
Invoice class 111
invoice management application

main menu 162
invoices' categories

adding, to tree panel 320-326
itemclick event 139
itemId property 251
item property 306
items array 87
itemSelector property 288

J
JavaScript debugger 20
JavaScript file

URL 10
JavaScript Lint plugin

using 18
JavaScript validator 20
jsbuilder folder 11
JSON reader 128, 129
Jump class

defining 42

L
Labelable class 182
launch method 247
layout system

about 91
accordion layout 102, 103
border layout 101, 102

card layout 93, 94
fit layout 92, 93
hbox layout 95-99
vbox layout 99, 100

leaf property 306
learning-ext-4 folder

01-basics folder, creating 12
creating 12
extjs-4.1.1 folder, creating 12

legacy browsers
supporting 373-375

lenghtMessage property 115
line chart 391, 393
listeners

adding, to dataview 288
loader system

about 54
dependencies 57-59
loader, enabling 55, 56
synchronous loading 60
using 54

locale folder 11
look and feel

advanced theming 358
different styles, for same

component 370-372
environment, setting up 351, 352
legacy browsers, supporting 373-375
resources folder 353-355
variables 357

M
main menu, invoice management

application
about 162
creating 163-170

mapping property
about 132
using 132-134

maximizable property 90
menu property 151
menus

adding 151-155
model

about 111
creating 111, 112

[413]

defining, for store 208
relationships 117
validations 113

model layer 246
Model-View-Controller pattern. See MVC
modules

creating 263-271
functionality, adding 272-279
opening 257-262
references 279, 280

msg property 107
MVC pattern

about 7, 245, 283
controller layer 246
model layer 246
view layer 246

MySQL database
URL 126

N
nodes

adding 309, 310
removing 311-313

number field
about 185-188

Numeric axis 385

O
object properties configurations, sprite

fill 380
font 380
height 380
opacity 380
path 380
radius 380
radiusX 380
radiusY 380
stroke 380
stroke-width 380
text 380
type 380
width 380
x 380
y 380

Observable class 44

onDestroy method 79
onDragDrop method 334
onDragEnter method 333
onDrag method 333
onDragOut method 333
onDragOver method 333
on method 143
onReady event 56
onReady method 58, 108, 374
Opera 373
overCls property 76

P
pageSize property 239
paging, grid panel 239, 240
PagingToolBar item 239
panel 86-89
Panel class 87
params property 109
paths property 55
pie chart 394
plugins

about 233
Ext.grid.plugin.CellEditing 234-236
Ext.grid.plugin.Editing 234
Ext.grid.plugin.RowEditing 236-238

post-processors
about 40
alias 41
alternateClassName 41
creating 41
singleton 41
uses 41

pre-processors
about 39
alias 41
className 41
config 41
creating 40, 41
extend 41
inheritableStatics 41
loader 41
mixins 41
statics 41
xtype 41

[414]

proxy
about 126
JSON reader 128
types 126
XML reader 130

Q
querying, DOM 63-65

R
radar chart 395-397
radio button 198-201
Radio class 199
raw value 182
record property 131
records property 306
relationships, model 117, 118
remote data

retrieving 126
remote data, retrieving

Ajax proxy used 126
JSON reader used 128
mapping property used 132
XML reader used 130

rendering phase, components lifecycle
about 75
diagrammatic representation 75
rsteps 75-77

renderTo property 74 90, 146
request method 106
require method 56
resources folder

about 12, 353
config.rb file 354
ext4 folder 354
mytheme folder 355
sass folder 354

responseText property 108
responseXML property 109
Rich Internet Applications (RIAs) 7
root property 130, 306
RowSelectionModel class 218
rowspan property 161
Ruby

about 352

downloading 352
gem 352
installing 352

S
Safari 373
scatter chart 397, 398
selection models 218, 219
Sencha

URL 9
Sencha Architect desktop application

about 22, 25
creating 23-25

Sencha blog
URL 376

Sencha SDK Tools
downloading 373
installing 373

series class 386
series examples

about 386
area chart 387, 388
bar chart 389-391
gauge charts 399, 400
line chart 391-393
pie chart 394
radar chart 395-397
scatter chart 397, 398

setConfig method 55
setPath method 56
setStyle method 62
show method 90
singleton class

defining 52
Skater class 44
Spin class

defining 43
Spke tplugin

URL 19
sprite

interaction, adding 382, 383
src folder 11
startDrag method 333
statics methods

alias 51

[415]

statics properties
alias 52

store
about 119
creating 119
defining 285
defining, for grid 209, 210
elements, adding 120, 121
elements, looping through 122
records, removing 125
records, retrieving 122, 123
remote data, retrieving 126

style tag 158
Sublime Text 2 editor

about 18
plugins, adding 18

success event 140
success function 107
synchronous loading 60

T
taxtId property 115
tbar property 89
templates

about 289
working 290, 291, 293

Textfield class 183-185
Textmate editor

about 21
bundles 21

text property 146, 306
Theme class 386
Time axis 385
timeout property 110
toolbars

about 156
components, adding 157
creating 156-162

tree nodes 305
tree panel

about 300, 301, 302
checkbox, adding 313, 314
grid tree 315, 317, 319

invoices' categories, adding 320-326
nodes, adding 309, 310, 311
tree drag-and-drop 306-309
tree nodes 305
TreeStore 303-305

TreeStore 303-305
type property 114, 127

U
url property 127
user model

defining 284

V
validations, model 113, 114
variables 357
viewConfig property 309
view layer 246
Viewport class 163, 164
view property 306
views 250-253
views folder 285

W
WAMP server

URL 126
welcome folder 12
window component 90, 91
wireframes

about 27
categories module 29
client module 28
using 27

X
XAMP

URL 126
XML reader 130, 131
xtype 152

Thank you for buying
Learning Ext JS 4

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Ext JS 4 First Look
ISBN: 978-1-849516-66-2 Paperback: 340 pages

A practical guide including examples of the new
features in Ext JS 4 and tips to migrate from Ext JS 3

1. Migrate your Ext JS 3 applications easily to
Ext JS 4 based on the examples presented in
this guide

2. Full of diagrams, illustrations, and step-by-step
instructions to develop real word applications

3. Driven by examples and explanations of how
things work

Ext JS 4 Web Application
Development Cookbook
ISBN: 978-1-849516-86-0 Paperback: 488 pages

Over 110 easy-to-follow recipes backed up with
real-life examples, walking you through basic Ext
JS features to advanced application design using
Sencha's Ext JS

1. Learn how to build Rich Internet Applications
with the latest version of the Ext JS framework
in a cookbook style

2. From creating forms to theming your
interface, you will learn the building blocks for
developing the perfect web application

3. Easy to follow recipes step through practical
and detailed examples which are all fully
backed up with code, illustrations, and tips

Please check www.PacktPub.com for information on our titles

Learning Ext JS 3.2
ISBN: 978-1-849511-20-9 Paperback: 432 pages

Build dynamic, desktop-style user interfaces for your
data-driven web applications using Ext JS

1. Learn to build consistent, attractive web
interfaces with the framework components

2. Integrate your existing data and web services
with Ext JS data support

3. Enhance your JavaScript skills by using Ext's
DOM and AJAX helpers

4. Extend Ext JS through custom components

Learning Vaadin
ISBN: 978-1-849515-22-1 Paperback: 412 pages

Master the full range of web development features
powered by Vaadin-built RIAs

1. Discover the Vaadin framework in a
progressive and structured way

2. Learn about components, events, layouts,
containers, and bindings

3. Create outstanding new components
by yourself

4. Integrate with your existing frameworks
and infrastructure

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Basics
	Should I use Ext JS for my next project?
	Getting started with Ext JS
	Looking at the whole picture
	Why so many files and folders?

	Our first program
	Editors
	Sublime Text 2
	Eclipse Web Tools Platform project
	Aptana
	Textmate
	Sencha Architect

	Building an application
	Planning our application
	Wireframing
	Data structure
	File structure

	Summary

	Chapter 2: The Core Concepts
	The class system
	Simple inheritance
	Pre-processors and post-processors
	Mixing many classes
	Configurations
	Statics methods and properties
	Singleton
	Alias

	Loading classes on demand
	Enabling the loader
	Dependencies
	Synchronous Loading

	Working with the DOM
	Getting elements
	Query – How to find them?

	Manipulation – How to change it?
	Summary

	Chapter 3: Components and Layouts
	The components lifecycle
	The creation phase
	The rendering phase
	The destruction phase
	The lifecycle in action

	About containers
	The panel
	The Window component

	The layout system
	Fit layout
	Card layout
	HBox layout
	VBox layout
	Border layout
	Accordion layout

	Summary

	Chapter 4: It's All About the Data
	Ajax
	Models
	Validations
	Relationships

	Dealing with the store
	Adding new elements
	Looping through the elements
	Retrieving the records
	Removing records

	Retrieving remote data
	Ajax proxy
	JSON reader
	XML reader
	Mappings

	Sending data
	Summary

	Chapter 5: Buttons and Toolbars
	Event driven development
	A simple button
	Adding menus
	Toolbars
	The main menu for our application
	Summary

	Chapter 6: Doing it with Forms
	The form component
	Anatomy of the fields

	Available fields
	The Textfield class
	The number field
	The combobox field
	The date field
	The checkbox
	The radio button

	The field container
	Submitting the data
	Summary

	Chapter 7: Give me the Grid
	The data connection (models and stores)
	Defining a model for the store of the grid
	Defining a store for the grid

	A basic grid panel
	Columns
	Columns renderers
	Selection models
	Grid listeners
	Features
	Ext.grid.feature.Grouping
	Ext.grid.feature.GroupingSummary
	Ext.grid.feature.RowBody
	Ext.grid.feature.Summary

	Plugins
	Ext.grid.plugin.Editing
	Ext.grid.plugin.CellEditing
	Ext.grid.plugin.RowEditing

	Grid paging
	Infinite scrolling
	Summary

	Chapter 8: Architecture
	The MVC pattern
	Creating our first application
	The views
	The controller
	Listening events
	Opening modules

	Creating a module
	Adding functionality
	References

	Summary

	Chapter 9: DataViews and Templates
	The data connection (models and stores)
	Defining our User Model
	Defining the store

	A basic dataview
	Getting all our code together

	Handling events on the dataview
	Adding the listeners to the dataview

	Templates
	A more complex dataview
	Summary

	Chapter 10: The Tree Panel
	A basic tree panel
	The TreeStore
	Tree nodes
	Tree drag-and-drop
	Adding and removing nodes
	The check tree
	The grid tree
	Adding an invoices' categories tree panel
	Summary

	Chapter 11: Drag and Drop
	Make an item draggable
	Hitting the drop zone
	Drag and drop between Ext JS components
	Enhancing our application with drag
and drop
	Summary

	Chapter 12: Look and Feel
	Setting up our environment
	The resources folder
	Variables
	Advanced theming
	Adding new gradients
	Styles for the tabs
	Styling the panel

	Different styles for the same component
	Supporting legacy browsers
	Summary

	Chapter 13: From Drawing to Charting
	Basic drawing
	Adding interaction
	Charts
	Legend
	Axis
	Gradients
	Series
	Theming

	Series examples
	Area
	Bar
	Line
	Pie
	Radar
	Scatter
	Gauge

	Enhancing our application with charts
	Summary

	Index

